Search results for: Soil confinement
837 Soil Resistivity Data Computations; Single and Two - Layer Soil Resistivity Structure and Its Implication on Earthing Design
Authors: M. Nassereddine, J. Rizk, G. Nasserddine
Abstract:
Performing High Voltage (HV) tasks with a multi craft work force create a special set of safety circumstances. This paper aims to present vital information relating to when it is acceptable to use a single or a two-layer soil structure. Also it discusses the implication of the high voltage infrastructure on the earth grid and the safety of this implication under a single or a two-layer soil structure. A multiple case study is investigated to show the importance of using the right soil resistivity structure during the earthing system design.Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Step Voltage, Touch Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8823836 Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes
Authors: F. Pedron, M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa
Abstract:
Lead contamination of agricultural land mainly vegetated with perennial ryegrass (Lolium perenne) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H2O, KNO3, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of Lolium perenne showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant.
Keywords: Bioavailability, Freundlich-like equation, sequential extraction, soil lead contamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964835 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: Direct method, finite element method, foundation, R/C frame, soil-structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679834 Effect of Different Tillage Systems on Soil Properties and Production on Wheat, Maize and Soybean Crop
Authors: P. I. Moraru, T. Rusu
Abstract:
Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and crop yield. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1 - to assess the effects of tillage systems (Conventional System (CS), Minimum Tillage (MT), No-Tillage (NT)) on soil compaction, soil temperature, soil moisture and soil respiration and 2- to establish the effect of the changes on the production of wheat, maize and soybean. Five treatments were installed: CS-plough; MT-paraplow, chisel, rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this; soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15cm of soil depth and increased the soil temperature by 0.5-2.20C. Water dynamics and soil temperature showed no differences on the effect of crop yields. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the four conservation tillage measures decreased soil respiration, with the best effects of no-tillage. Although wheat production at MT and NT applications, had no significant differences soybean production was significantly affected from MT and NT applications. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.
Keywords: Soil tillage, soil properties, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3914833 Seismic Behavior of Suction Caisson Foundations
Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli
Abstract:
Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.
Keywords: Liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192832 Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant
Authors: Kolay, P.K., Sii, H. Y., Taib, S.N.L.
Abstract:
This paper presents the stabilization potential of Class F pond ash (PA) from a coal fired thermal power station on tropical peat soil. Peat or highly organic soils are well known for their high compressibility, natural moisture content, low shear strength and long-term settlement. This study investigates the effect of different amount (i.e., 5, 10, 15 and 20%) of PA on peat soil, collected from Sarawak, Malaysia, mainly compaction and unconfined compressive strength (UCS) properties. The amounts of PA added to the peat soil sample as percentage of the dry peat soil mass. With the increase in PA content, the maximum dry density (MDD) of peat soil increases, while the optimum moisture content (OMC) decreases. The UCS value of the peat soils increases significantly with the increase of PA content and also with curing periods. This improvement on compressive strength of tropical peat soils indicates that PA has the potential to be used as a stabilizer for tropical peat soil. Also, the use of PA in soil stabilization helps in reducing the pond volume and achieving environment friendly as well as a sustainable development of natural resources.Keywords: Compaction, Peat soil, Pond ash, Stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364831 The Effect of Different Level Crop Load and Humic Substance Applications on Yield and Yield Components of Alphonse Lavallee Grape Cultivar
Authors: A. Sarıkaya, A. Akın
Abstract:
This study was carried out to investigate effects of Control (C), 18 bud/vine, 23 bud/vine, 28 bud/vine, 18 bud/vine + TKI-Humas (soil), 23 bud/vine + TKI-Humas (soil), 28 bud/vine + TKI-Humas (soil) applications on yield and yield components of Alphonse Lavallee grape cultivar. The results were obtained as the highest cluster weight (302.31 g) with 18 bud/vine application; the highest berry weight (6.31 g) with 23 bud/vine + TKI-Humas (soil) and (6.79 g) with 28 bud/vine + TKI-Humas (soil) applications; the highest maturity index (36.95) with 18 bud/vine + TKI-Humas (soil) application; the highest L* color intensity (33.99) with 18 bud/vine + TKI-Humas (soil); the highest a* color intensity (1.53) with 23 bud/vine + TKI-Humas (soil) application. The effects of applications on grape fresh yield, grape juice yield and b* color intensity values were not found statistically significant.
Keywords: Alphonse Lavallee grape cultivar, crop load, TKI-Humas substances (soil), yield, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665830 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion
Authors: L. Mouzai, M. Bouhadef
Abstract:
Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Keywords: Flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621829 The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil
Authors: H. Dvořáčková, I. Mikajlo, J. Záhora, J. Elbl
Abstract:
Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost.Keywords: Leaching of nitrogen, soil, biochar, compost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031828 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades
Authors: Magdi M. E. Zumrawi, Nehla Mansour
Abstract:
This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.Keywords: Geogrid, reinforcement, stabilization, subgrade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801827 Reviewing Soil Erosion in Greece
Authors: Paschalis Koutalakis, George N. Zaimes, Valasia Iakovoglou, Konstantinos Ioannou
Abstract:
Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, scientific publications related to soil erosion studies in Greece were reviewed and categorized. To accomplish this, the online search engine of Scopus was used. The key words were “soil”, “erosion” and “Greece.” An analysis of the published articles was conducted at three levels: i) type of publication, ii) chronologic and iii) thematic. A hundred and ten publications published in scientific journals were reviewed. The results showed that the awareness regarding the soil erosion in Greece has increased only in the last decades. The publications covered a wide range of thematic categories such as the type of studied areas, the physical phenomena that trigger and influence the soil erosion, the negative anthropogenic impacts on them, the assessment tools that were used in order to examine the threat and the proper management. The analysis of these articles was significant and necessary in order to find the scientific gaps of soil erosion studies in Greece and help enhance the sustainability of soil management in the future.Keywords: Climate change, agricultural sustainability, environmental sustainability, soil management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403826 The Comparison of Some Soil Quality Indexes in Different Land uses of Ghareh Aghaj Watershed of Semirom, Isfahan, Iran
Authors: Bahareh Aghasi, Ahmad Jalalian, Naser Honarjoo
Abstract:
Land use change, if not based on proper scientific investigation affects other physical, chemical, and biological properties of soil and leading to increased destruction and erosion. It was imperative to study the effects of changing rangelands to farmlands on some Soil quality indexes. Undisturbed soil samples were collected from the depths of 0-10 and 10-30 centimeter in pasture with good vegetation cover(GP), pasture with medium vegetation cover(MP), abandoned dry land farming(ADF) and degraded dry land farming(DDF) land uses in Ghareh Aghaj watershed of Isfahan province. The results revealed that organic matter(OM), cation exchange capacity(CEC) and available potassium(AK) decreasing in the depth of 0-10 centimeter were 66.6, 38.8 and 70 percent and in the depth of 10-30 centimeter were 58, 61.4 and 83.5 percent respectively in DDF comparison with GP. Concerning to the results, it seems that land use change can decrease soil quality and increase soil degradation and lead in undesirable consequences.Keywords: Land use change, Soil degradation, Soil quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667825 Comparative Analysis of Soil Enzyme Activities between Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
Soil enzyme activities in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined to determine levels of mineralization and metabolism. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and Pw) trees for analysis. Cellulase, β-xylosidase, and protease activities were higher in BB-1 samples those in BB-2 samples. These activity levels corresponded to the distribution of cellulose and hemicellulose in the soil horizons. Cellulase, β-xylosidase, and chymotrypsin activities were higher in soil from the Pw forest than in that from the BB-2 forest. The relationships between the soil enzymes calculated by Spearman’s rank correlation indicate that the interactions between enzymes in BB-2 samples were more complex than those in Pw samples.
Keywords: Comparative analysis, enzyme activities, forest soil, Spearman’s rank correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207824 Laboratory Investigation of Expansive Soil Stabilized with Calcium Chloride
Authors: Magdi M. E. Zumrawi, Khalid A. Eltayeb
Abstract:
Chemical stabilization is a technique commonly used to improve the expansive soil properties. In this regard, an attempt has been made to evaluate the influence of Calcium Chloride (CaCl2) stabilizer on the engineering properties of expansive soil. A series of laboratory experiments including consistency limits, free swell, compaction, and shear strength tests were performed to investigate the effect of CaCl2 additive with various percentages 0%, 2%, 5%, 10% and 15% for improving expansive soil. The results obtained shows that the increase in the percentage of CaCl2decreased the liquid limit and plasticity index leading to significant reduction in the free swell index. This, in turn, increased the maximum dry density and decreased the optimum moisture content which results in greater strength. The unconfined compressive strength of soil stabilized with 5% CaCl2 increased approximately by 50% as compared to virgin soil. It can be concluded that CaCl2 had shown promising influence on the strength and swelling properties of expansive soil, thereby giving an advantage in improving problematic expansive soil.Keywords: Calcium chloride, chemical stabilization, expansive soil, improving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028823 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction
Authors: A. Armin, R. Fotouhi, W. Szyszkowski
Abstract:
In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.
Keywords: Finite element analysis, soil-blade contact modeling, blade force, experimental results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182822 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay
Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand
Abstract:
Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.
Keywords: Nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682821 Lateral Behavior of Concrete
Authors: Ali Khajeh Samani, Mario M. Attard
Abstract:
Lateral expansion is a factor defining the level of confinement in reinforced concrete columns. Therefore, predicting the lateral strain relationship with axial strain becomes an important issue. Measuring lateral strains in experiments is difficult and only few report experimental lateral strains. Among the existing analytical formulations, two recent models are compared with available test results in this paper with shortcomings highlighted. A new analytical model is proposed here for lateral strain axial strain relationship and is based on the supposition that the concrete behaves linear elastic in the early stages of loading and then nonlinear hardening up to the peak stress and then volumetric expansion. The proposal for the lateral strain axial strain relationship after the peak stress is mainly based on the hypothesis that the plastic lateral strain varies linearly with the plastic axial strain and it is shown that this is related to the lateral confinement level.Keywords: Confined Concrete, Lateral Strain, Triaxial test, Postpeak behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994820 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading
Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth
Abstract:
The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.Keywords: Collapse load analysis, inelastic buckling, liquefaction, pile group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903819 Debye Layer Confinement of Nucleons in Nuclei by Laser Ablated Plasma
Authors: M. Ghanaatian, N. Ghahramany, A. Bazrafshan
Abstract:
Following the laser ablation studies leading to a theory of nuclei confinement by a Debye layer mechanism, we present here numerical evaluations for the known stable nuclei where the Coulomb repulsion is included as a rather minor component especially for lager nuclei. In this research paper the required physical conditions for the formation and stability of nuclei particularly endothermic nuclei with mass number greater than to which is an open astrophysical question have been investigated. Using the Debye layer mechanism, nuclear surface energy, Fermi energy and coulomb repulsion energy it is possible to find conditions under which the process of nucleation is permitted in early universe. Our numerical calculations indicate that about 200 second after the big bang at temperature of about 100 KeV and subrelativistic region with nucleon density nearly equal to normal nuclear density namely, 10cm all endothermic and exothermic nuclei have been formed.Keywords: Endothermic nuclear synthesis, Fermi energy, Surface tension, Debye length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574818 Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms
Authors: A. Özyer, N. G. Turan, Y. Ardalı
Abstract:
The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two Nocardia sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with Nocardia isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 °C) during ten weeks. Residue endosulfan and its metabolites’ concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly.
Keywords: Endosulfan, biodegradation, Nocardia sp., soil, organochlorine pesticide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407817 A Semi-Cylindrical Capacitive Sensor Used for Soil Moisture Measurement
Authors: Subir Das, Tuhin Subhra Sarkar, Badal Chakraborty
Abstract:
Differing from the structure of traditional parallel plate capacitive sensor a semi cylindrical capacitive sensor has been introduced in this present work to measure the soil moisture conveniently. Here, the numerical analysis method to evaluate the capacitance from the semi-cylindrical capacitive sensor is analyzed and discussed. The changes of capacitance with the variation of soil moisture obtained linear in the nano farad range (nF) and which converted into voltage variation by using proper signal conditioning circuit. Experimental results depict the satisfactory performance of the sensor for measurement of soil moisture in the range of 0 to 70%. We investigated the linearity of 4% of FSO and sensitivity of 70 mV/unit percentage changes in soil moisture level (DB).
Keywords: Semi cylindrical Capacitive Sensor, Capacitance to Voltage converter Circuit, Soil Moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4934816 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test
Authors: Reza Ziaie Moayed, Ehsan Azini
Abstract:
Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.
Keywords: Jet grouting column, Soil improvement, Numerical modeling, In-situ loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036815 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: Soil management, climate change, new technologies, conservation practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467814 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.
Keywords: Preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718813 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction
Authors: A. Armin, R. Fotouhi, W. Szyszkowski
Abstract:
This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction plays major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is very important for optimal designing of farm equipment. In this paper, a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimensional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experimental ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.Keywords: Finite element analysis, soil-blade contact modeling, blade force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001812 Degradation Propensity of Welded Mild Steel in Coastal Soil of University of Lagos
Authors: S. O. Adeosun, O. S. Sanni
Abstract:
Study on corrosion propensity of welded mild steel- bar in soil media around the coastal area of University of Lagos has been carried out using gravimetric method. Six (6) samples each for welded and unwelded mild steels were cut, their initial weights were recorded and buried in two selected soil. The weight losses of these coupons were measured at regular intervals for a period of six months (180 days).
The corrosiveness of the soil media varied widely depending on the potency level of its constituents. The results revealed that soil in the studied area have marked variations in composition and contents. Soil medium with a lower pH and higher chloride ion concentration aggressively attacked the coupons with the welded steel coupon corroding faster than unwelded one. The medium resistivity to the flow of current is another strong factor affecting corrosion rate.
Keywords: Coastal area, corrosion rate, mild steel, soil media, welds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346811 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field
Authors: Abdulfatah Faraj Aboufayed
Abstract:
Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded were occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 liter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil. It shows also strong correlation between amount of surface runoff water and amount of eroded soil.
Keywords: Rain, Surface runoff water, Soil, Water erosion, Soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997810 Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI
Authors: R. Ziaie Moayed, F. Allahyari
Abstract:
Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best methods for stabilization clayey soils is neutralization the clay particles. For this purpose we can use ion exchange materials. Ion exchange solution like CBR plus can be used for soil stabilization. One of the most important things in using CBR plus is determination the amount of this solution for various soils with different properties. In this study a laboratory experiment is conduct to evaluate the ion exchange capacity of three soils with various plasticity index (PI) to determine amount or required CBR plus solution for soil stabilization.Keywords: CBR plus, clayey soils, ion exchange, soil stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450809 Response of Buildings with Soil-Structure Interaction with Varying Soil Types
Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar
Abstract:
Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multistorey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.
Keywords: Dynamic response, multi-storey building, Soil-Structure Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4163808 Drafting the Design and Development of Micro- Controller Based Portable Soil Moisture Sensor for Advancement in Agro Engineering
Authors: Guneet Mander, Gurinder Pal Singh
Abstract:
Moisture is an important consideration in many aspects ranging from irrigation, soil chemistry, golf course, corrosion and erosion, road conditions, weather predictions, livestock feed moisture levels, water seepage etc. Vegetation and crops always depend more on the moisture available at the root level than on precipitation occurrence. In this paper, design of an instrument is discussed which tells about the variation in the moisture contents of soil. This is done by measuring the amount of water content in soil by finding the variation in capacitance of soil with the help of a capacitive sensor. The greatest advantage of soil moisture sensor is reduced water consumption. The sensor is also be used to set lower and upper threshold to maintain optimum soil moisture saturation and minimize water wilting, contributes to deeper plant root growth ,reduced soil run off /leaching and less favorable condition for insects and fungal diseases. Capacitance method is preferred because, it provides absolute amount of water content and also measures water content at any depth.Keywords: Capacitive Sensors, aluminum, Water, Irrigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000