Search results for: Performance model
11697 Mathematical Expression for Machining Performance
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.
Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73111696 DEA Method for Evaluation of EU Performance
Authors: M. Staníčková
Abstract:
The paper deals with an application of quantitative analysis – the Data Envelopment Analysis (DEA) method to performance evaluation of the European Union Member States, in the reference years 2000 and 2011. The main aim of the paper is to measure efficiency changes over the reference years and to analyze a level of productivity in individual countries based on DEA method and to classify the EU Member States to homogeneous units (clusters) according to efficiency results. The theoretical part is devoted to the fundamental basis of performance theory and the methodology of DEA. The empirical part is aimed at measuring degree of productivity and level of efficiency changes of evaluated countries by basic DEA model – CCR CRS model, and specialized DEA approach – the Malmquist Index measuring the change of technical efficiency and the movement of production possibility frontier. Here, DEA method becomes a suitable tool for setting a competitive/uncompetitive position of each country because there is not only one factor evaluated, but a set of different factors that determine the degree of economic development.
Keywords: CCR CRS model, cluster analysis, DEA method, efficiency, EU, Malmquist index, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261911695 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.
Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114011694 Application of Spreadsheet and Queuing Network Model to Capacity Optimization in Product Development
Authors: Muhammad Marsudi, Dzuraidah Abdul Wahab, Che Hassan Che Haron
Abstract:
Modeling of a manufacturing system enables one to identify the effects of key design parameters on the system performance and as a result to make correct decision. This paper proposes a manufacturing system modeling approach using a spreadsheet model based on queuing network theory, in which a static capacity planning model and stochastic queuing model are integrated. The model was used to improve the existing system utilization in relation to product design. The model incorporates few parameters such as utilization, cycle time, throughput, and batch size. The study also showed that the validity of developed model is good enough to apply and the maximum value of relative error is 10%, far below the limit value 32%. Therefore, the model developed in this study is a valuable alternative model in evaluating a manufacturing systemKeywords: Manufacturing system, product design, spreadsheet model, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192011693 Analysis of Design Structuring and Performance of CPW Fed UWB Antenna in Presence of Human Arm Model
Authors: Narbada Prasad Gupta, Mithilesh Kumar
Abstract:
A compact Ultra Wide Band (UWB) antenna with coplanar waveguide feed has been designed and results are verified in this paper. The antenna has been designed on FR4 substrate with dielectric constant (εr) of 4.4 and dimensions of 32mm x 26mm x 0.8mm. The presented antenna shows return loss characteristics in the band of 3.1 to 10.6 GHz as prescribed by FCC, USA. Parametric studies have been done and results thus obtained have been presented. Simulated results have been verified on Rohde & Swartz VNA. The measured results are in good agreement with simulated results which make the presented antenna suitable to be used for wearable applications. Performance analysis of antenna has also been shown in the presence of three layered Human Arm model. Results obtained in presence of Human Arm model has been compared with that in free space.Keywords: CPW feed, Human Arm model, UWB, wearable antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150711692 Modeling and Simulation of Axial Fan Using CFD
Authors: Hemant Kumawat
Abstract:
Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively low pressures. In general, they are low in cost and possess good efficiency, and can have blades of airfoil shape. Axial flow fans show good efficiencies, and can operate at high static pressures if such operation is necessary. Our objective is to model and analyze the flow through AXIAL FANS using CFD Software and draw inference from the obtained results, so as to get maximum efficiency. The performance of an axial fan was simulated using CFD and the effect of variation of different parameters such as the blade number, noise level, velocity, temperature and pressure distribution on the blade surface was studied. This paper aims to present a final 3D CAD model of axial flow fan. Adapting this model to the available components in the market, the first optimization was done. After this step, CFX flow solver is used to do the necessary numerical analyses on the aerodynamic performance of this model. This analysis results in a final optimization of the proposed 3D model which is presented in this article.
Keywords: ANSYS CFX, Axial Fan, Computational Fluid Dynamics (CFD), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120211691 Noise Performance of Magnetic Field Tunable Avalanche Transit Time Source
Authors: Partha Banerjee, Aritra Acharyya, Arindam Biswas, A. K. Bhattacharjee, Amit Banerjee, Hiroshi Inokawa
Abstract:
The effect of magnetic field on the noise performance of the magnetic field tunable avalanche transit time (MAGTATT) device based on Si, designed to operate at W-band (75 – 110 GHz), has been studied in this paper. A comprehensive two-dimensional (2D) model has been developed. The simulation results show that due to the presence of applied external transverse magnetic field, both the noise spectral density and noise measure of the MAGTATT device increase significantly. The noise performance of the device has been found to be further deteriorated if the magnetic field strength is further increased. Hence, in order to achieve the magnetic field tuning of the radio frequency (RF) properties of impact avalanche transit time (IMPATT) source, the noise performance of it has to be sacrificed in fair extent. Moreover, it clearly indicates that an IMPATT source must be covered with appropriate magnetic shielding material to avoid undesirable shift in operating frequency and output power and objectionable amount of deterioration in noise performance due to the presence of external magnetic field.Keywords: 2-D model, IMPATT, MAGTATT, mm-wave, noise performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80911690 A Comparative Performance Evaluation Model of Mobile Agent Versus Remote Method Invocation for Information Retrieval
Authors: Yousry El-Gamal, Khalid El-Gazzar, Magdy Saeb
Abstract:
The development of distributed systems has been affected by the need to accommodate an increasing degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an alternative to build a smart generation of highly distributed systems. In this work, we investigate the performance aspect of agent-based technologies for information retrieval. We present a comparative performance evaluation model of Mobile Agents versus Remote Method Invocation by means of an analytical approach. We demonstrate the effectiveness of mobile agents for dynamic code deployment and remote data processing by reducing total latency and at the same time producing minimum network traffic. We argue that exploiting agent-based technologies significantly enhances the performance of distributed systems in the domain of information retrieval.Keywords: Mobile Agent, performance evaluation, RMI, information retrieval, distributed systems, database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225111689 Normalizing Logarithms of Realized Volatility in an ARFIMA Model
Authors: G. L. C. Yap
Abstract:
Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.
Keywords: Long-memory, Gaussian process, Whittle estimator, normalization, volatility, value-at-risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168811688 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate
Authors: Mogari I. Rapoo, Diteboho Xaba
Abstract:
This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.
Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135911687 Performance of the Strong Stability Method in the Univariate Classical Risk Model
Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani
Abstract:
In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.Keywords: Markov Chain, regenerative processes, risk models, ruin probability, strong stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114411686 Performance Analysis of Software Reliability Models using Matrix Method
Authors: RajPal Garg, Kapil Sharma, Rajive Kumar, R. K. Garg
Abstract:
This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.Keywords: Matrix method, Model ranking, Model selection, Model selection criteria, Software reliability models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231911685 A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description
Authors: Jaroslav Polec, Viliam Hirner, Michal Martinovič, Kvetoslava Kotuliaková
Abstract:
In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.Keywords: Wireless channel, error model, Markov chain, Elliot model, Gilbert model, generator, IEEE 802.11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211311684 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics
Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari
Abstract:
This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.
Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115811683 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement
Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov
Abstract:
One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.
Keywords: Fuzzy logic, fuzzy sets, performance measurement, project analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107811682 Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule
Authors: Pankaj Swarnkar, Shailendra Jain, R.K Nema
Abstract:
Adaptive control involves modifying the control law used by the controller to cope with the fact that the parameters of the system being controlled change drastically due to change in environmental conditions or in system itself. This technique is based on the fundamental characteristic of adaptation of living organism. The adaptive control process is one that continuously and automatically measures the dynamic behavior of plant, compares it with the desired output and uses the difference to vary adjustable system parameters or to generate an actuating signal in such a way so that optimal performance can be maintained regardless of system changes. This paper deals with application of model reference adaptive control scheme in first order system. The rule which is used for this application is MIT rule. This paper also shows the effect of adaptation gain on the system performance. Simulation is done in MATLAB and results are discussed in detail.Keywords: Adaptive control system, Adaptation gain, MIT rule, Model reference adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222511681 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation
Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi
Abstract:
Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208811680 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119311679 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties
Authors: Alia Abdul Ghaffar, Tom Richardson
Abstract:
A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive controller, unlike the fixed gain controller, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture can result in an enhanced tracking performance in the presence parametric uncertainties.
Keywords: UAV, quadrotor, model reference adaptive control, LQR control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556111678 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: Model predictive control, optimal control, crystal growth, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82911677 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications
Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan
Abstract:
High-performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from EM simulations is oftentimes cumbersome leading to large storage requirements. In this paper, we proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. We solve this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.
Keywords: RADAR, RCS, high performance computing, point scatterer model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60611676 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76111675 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184611674 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach
Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi
Abstract:
This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233511673 Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants
Authors: Gulshan Sachdeva, Vaibhav Jain
Abstract:
In present paper, the performance of various alternative refrigerants is compared to find the substitute of R22, the widely used hydrochlorofluorocarbon refrigerant in developing countries. These include the environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134A, R410A, R407C and M20. In the present study, a steady state thermodynamic model (includes both first and second law analysis) which simulates the working of an actual vapor-compression system is developed. The model predicts the performance of system with alternative refrigerants. Considering the recent trends of replacement of ozone depleting refrigerants and improvement in system efficiency, R407C is found to be potential candidate to replace R22 refrigerant in the present study.
Keywords: Refrigeration, compression system, performance study, modeling, R407C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162111672 A Martingale Residual Diagnostic for Logistic Regression Model
Authors: Entisar A. Elgmati
Abstract:
Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.
Keywords: Covariance, logistic model, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187811671 Intention to Use Digital Library based on Modified UTAUT Model: Perspectives of Malaysian Postgraduate Students
Authors: Abd Latif Abdul Rahman, Adnan Jamaludin, Zamalia Mahmud
Abstract:
Unified Theory of Acceptance and Use of Technology (UTAUT) model has demonstrated the influencing factors for generic information systems use such as tablet personal computer (TPC) and mobile communication. However, in the context of digital library system, there has been very little effort to determine factors affecting the intention to use digital library based on the UTAUT model. This paper investigates factors that are expected to influence the intention of postgraduate students to use digital library based on modified UTAUT model. The modified model comprises of constructs represented by several latent variables, namely performance expectancy (PE), effort expectancy (EE), information quality (IQ) and service quality (SQ) and moderated by age, gender and experience in using digital library. Results show that performance expectancy, effort expectancy and information quality are positively related to the intention to use digital library, while service quality is negatively related to the intention to use digital library. Age and gender have shown no evidence of any significant interactions, while experience in using digital library significantly interacts with effort expectancy and intention to use digital library. This has provided the evidence of a moderating effect of experience in the intention to use digital library. It is expected that this research will shed new lights into research of acceptance and intention to use the library in a digital environment.Keywords: Intention to use digital library, UTAUT model, performance expectancy, effort expectancy, information quality, service quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487011670 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165811669 Simulation of Agri-Food Supply Chains
Authors: Sherine Beshara, Khaled S. El-Kilany, Noha M. Galal
Abstract:
Supply chain management has become more challenging with the emerging trend of globalization and sustainability. Lately, research related to perishable products supply chains, in particular agricultural food products, has emerged. This is attributed to the additional complexity of managing this type of supply chains with the recently increased concern of public health, food quality, food safety, demand and price variability, and the limited lifetime of these products. Inventory management for agrifood supply chains is of vital importance due to the product perishability and customers- strive for quality. This paper concentrates on developing a simulation model of a real life case study of a two echelon production-distribution system for agri-food products. The objective is to improve a set of performance measures by developing a simulation model that helps in evaluating and analysing the performance of these supply chains. Simulation results showed that it can help in improving overall system performance.Keywords: Agri-food supply chains, inventory model, modelling and Simulation, supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336011668 Logistics Outsourcing: Performance Models and Financial and Operational Indicators
Authors: Carlos Sanchís-Pedregosa, José A. D. M achuca, María del Mar González-Zamora
Abstract:
The growing outsourcing of logistics services resulting from the ongoing current in firms of costs reduction/increased efficiency means that it is becoming more and more important for the companies doing the outsourcing to carry out a proper evaluation. The multiple definitions and measures of logistics service performance found in research on the topic create a certain degree of confusion and do not clear the way towards the proper measurement of their performance. Do a model and a specific set of indicators exist that can be considered appropriate for measuring the performance of logistics services outsourcing in industrial environments? Are said indicators in keeping with the objectives pursued by outsourcing? We aim to answer these and other research questions in the study we have initiated in the field within the framework of the international High Performance Manufacturing (HPM) project of which this paper forms part. As the first stage of this research, this paper reviews articles dealing with the topic published in the last 15 years with the aim of detecting the models most used to make this measurement and determining which performance indicators are proposed as part of said models and which are most used. The first steps are also taken in determining whether these indicators, financial and operational, cover the aims that are being pursued when outsourcing logistics services. The findings show there is a wide variety of both models and indicators used. This would seem to testify to the need to continue with our research in order to try to propose a model and a set of indicators for measuring the performance of logistics services outsourcing in industrial environments.Keywords: Logistics, objectives, outsourcing, performancemeasurement systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135