Search results for: Parallel Job Shop Scheduling Problem
4193 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem
Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang
Abstract:
Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16074192 A Bi-Objective Model to Address Simultaneous Formulation of Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering has been increasingly addressed within last decades as an approach to improve the project execution costs. Therefore, we have taken the problem into consideration in this paper, aiming to maximize schedules quality robustness, in addition to minimize the relevant costs. In this regard, a bi-objective mathematical model is developed to formulate the problem. Moreover, it is possible to utilize the all-unit discount for materials purchasing. The problem is then solved by the E-constraint method, and the Pareto front is obtained for a variety of robustness values. The applicability and efficiency of the proposed model is tested by different numerical instances, finally.Keywords: E-constraint method, material ordering, project management, project scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20154191 Impact of Fair Share and its Configurations on Parallel Job Scheduling Algorithms
Authors: Sangsuree Vasupongayya
Abstract:
To provide a better understanding of fair share policies supported by current production schedulers and their impact on scheduling performance, A relative fair share policy supported in four well-known production job schedulers is evaluated in this study. The experimental results show that fair share indeed reduces heavy-demand users from dominating the system resources. However, the detailed per-user performance analysis show that some types of users may suffer unfairness under fair share, possibly due to priority mechanisms used by the current production schedulers. These users typically are not heavy-demands users but they have mixture of jobs that do not spread out.
Keywords: Fair share, Parallel job scheduler, Backfill, Measures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20904190 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function
Authors: Bita Tadayon, Nasser Salmasi
Abstract:
This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18334189 A Profit-Based Maintenance Scheduling of Thermal Power Units in Electricity Market
Authors: Smajo Bisanovic, Mensur Hajro, Muris Dlakic
Abstract:
This paper presents one comprehensive modelling approach for maintenance scheduling problem of thermal power units in competitive market. This problem is formulated as a 0/1 mixedinteger linear programming model. Model incorporates long-term bilateral contracts with defined profiles of power and price, and weekly forecasted market prices for market auction. The effectiveness of the proposed model is demonstrated through case study with detailed discussion.
Keywords: Maintenance scheduling, bilateral contracts, market prices, profit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16084188 An MCDM Approach to Selection Scheduling Rule in Robotic Flexibe Assembly Cells
Authors: Khalid Abd, Kazem Abhary, Romeo Marian
Abstract:
Multiple criteria decision making (MCDM) is an approach to ranking the solutions and finding the best one when two or more solutions are provided. In this study, MCDM approach is proposed to select the most suitable scheduling rule of robotic flexible assembly cells (RFACs). Two MCDM approaches, Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are proposed for solving the scheduling rule selection problem. The AHP method is employed to determine the weights of the evaluation criteria, while the TOPSIS method is employed to obtain final ranking order of scheduling rules. Four criteria are used to evaluate the scheduling rules. Also, four scheduling policies of RFAC are examined to choose the most appropriate one for this purpose. A numerical example illustrates applications of the suggested methodology. The results show that the methodology is practical and works in RFAC settings.
Keywords: AHP, TOPSIS, Scheduling rules selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18124187 A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks
Authors: Vahid Salmani, Saman Taghavi Zargar, Mahmoud Naghibzadeh
Abstract:
This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.Keywords: Modified maximum urgency first, maximum urgency first, real-time systems, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27314186 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling
Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel
Abstract:
Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is then important in a first step to optimize household consumptions to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipments starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So the ceiling would no longer be fixed. The scheduling would be done on two scales, on the one hand per dwelling, and secondly, at the level of a residential complex.
Keywords: Smart grid, Energy box, Scheduling, Gang Model, Energy consumption, Energy management system, and Wireless Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15864185 Analysis and Research of Two-Level Scheduling Profile for Open Real-Time System
Authors: Yongxian Jin, Jingzhou Huang
Abstract:
In an open real-time system environment, the coexistence of different kinds of real-time and non real-time applications makes the system scheduling mechanism face new requirements and challenges. One two-level scheduling scheme of the open real-time systems is introduced, and points out that hard and soft real-time applications are scheduled non-distinctively as the same type real-time applications, the Quality of Service (QoS) cannot be guaranteed. It has two flaws: The first, it can not differentiate scheduling priorities of hard and soft real-time applications, that is to say, it neglects characteristic differences between hard real-time applications and soft ones, so it does not suit a more complex real-time environment. The second, the worst case execution time of soft real-time applications cannot be predicted exactly, so it is not worth while to cost much spending in order to assure all soft real-time applications not to miss their deadlines, and doing that may cause resource wasting. In order to solve this problem, a novel two-level real-time scheduling mechanism (including scheduling profile and scheduling algorithm) which adds the process of dealing with soft real-time applications is proposed. Finally, we verify real-time scheduling mechanism from two aspects of theory and experiment. The results indicate that our scheduling mechanism can achieve the following objectives. (1) It can reflect the difference of priority when scheduling hard and soft real-time applications. (2) It can ensure schedulability of hard real-time applications, that is, their rate of missing deadline is 0. (3) The overall rate of missing deadline of soft real-time applications can be less than 1. (4) The deadline of a non-real-time application is not set, whereas the scheduling algorithm that server 0 S uses can avoid the “starvation" of jobs and increase QOS. By doing that, our scheduling mechanism is more compatible with different types of applications and it will be applied more widely.
Keywords: Hard real-time, two-level scheduling profile, open real-time system, non-distinctive schedule, soft real-time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15684184 A Survey of Job Scheduling and Resource Management in Grid Computing
Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan
Abstract:
Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.Keywords: Grid Computing, Job Scheduling, ResourceScheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34104183 Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem
Authors: Fatemeh Azimi, Razeeh Sadat Aboutalebi, Amir Abbas Najafi
Abstract:
In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.
Keywords: Evolutionary multi-objective optimization makespan, multi-mode, resource constraint, net present value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22944182 Effective Scheduling of Semiconductor Manufacturing using Simulation
Authors: Ingy A. El-Khouly, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.Keywords: Dispatching rules, lot release policy, re-entrant flowshop, semiconductor manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25714181 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: Constraint programming, Factors considered in scheduling, machine learning, scheduling system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14354180 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem
Authors: E. Koyuncu
Abstract:
The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.
Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12834179 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.
Keywords: Bus scheduling problem, decision support system, genetic algorithm, operation planning, shortest path, transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15324178 Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm
Authors: Aldy Gunawan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a hybrid algorithm for solving a timetabling problem, which is commonly encountered in many universities. The problem combines both teacher assignment and course scheduling problems simultaneously, and is presented as a mathematical programming model. However, this problem becomes intractable and it is unlikely that a proven optimal solution can be obtained by an integer programming approach, especially for large problem instances. A hybrid algorithm that combines an integer programming approach, a greedy heuristic and a modified simulated annealing algorithm collaboratively is proposed to solve the problem. Several randomly generated data sets of sizes comparable to that of an institution in Indonesia are solved using the proposed algorithm. Computational results indicate that the algorithm can overcome difficulties of large problem sizes encountered in previous related works.
Keywords: Timetabling problem, mathematical programming model, hybrid algorithm, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45734177 Collaboration of Multi-Agent and Hyper-Heuristics Systems for Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper introduces a framework based on the collaboration of multi agent and hyper-heuristics to find a solution of the real single machine production problem. There are many techniques used to solve this problem. Each of it has its own advantages and disadvantages. By the collaboration of multi agent system and hyper-heuristics, we can get more optimal solution. The hyper-heuristics approach operates on a search space of heuristics rather than directly on a search space of solutions. The proposed framework consists of some agents, i.e. problem agent, trainer agent, algorithm agent (GPHH, GAHH, and SAHH), optimizer agent, and solver agent. Some low level heuristics used in this paper are MRT, SPT, LPT, EDD, LDD, and MON
Keywords: Hyper-heuristics, multi-agent systems, scheduling problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21534176 Study on the Design of Supermarket Store Layouts: The Principle of “Sales Magnet“
Authors: Masao Ohta, Yoshiyuki Higuchi
Abstract:
This study analyses store layout among the many factors that underlie supermarket store design, this; in terms of what to display in a shop and where to place the items. This report examines newly-opened stores and evaluates their interior shop floor layouts, which we then attempt to categorize by various styles. We then consider the interaction between shop floor layout and customer behavior from the perspective of the supermarket as the seller. At this point, we focus on the “store magnets"–the main sections within the shop likely to attract customers into the store.Keywords: Supermarket Store Layout, Sales magnet, Customer Circulation Rate, Section Drop-by Rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198814175 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.
Keywords: Process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15884174 Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand
Authors: Punya Tepsing
Abstract:
This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident.
Keywords: Belief, auspicious materials, shop, entrepreneur, Maung Hat Yai.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19134173 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task
Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat
Abstract:
The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19434172 Cloud Computing Initiative using Modified Ant Colony Framework
Authors: Soumya Banerjee, Indrajit Mukherjee, P.K. Mahanti
Abstract:
Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.Keywords: Ant Colony, Cloud Computing, Grid, Resource allocator, Service Request.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27674171 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)
Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi
Abstract:
Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14304170 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.Keywords: Material ordering, project scheduling, quantity discount, space availability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23814169 Resource-Constrained Heterogeneous Workflow Scheduling Algorithm for Heterogeneous Computing Clusters
Authors: Lei Wang, Jiahao Zhou
Abstract:
The development of heterogeneous computing clusters provides robust computational support for large-scale workflows, commonly seen in domains such as scientific computing and artificial intelligence. However, the tasks within these large-scale workflows are increasingly heterogeneous, exhibiting varying demands on computing resources. This shift necessitates the integration of resource-constrained considerations into the workflow scheduling problem on heterogeneous computing platforms. In this study, we propose a scheduling algorithm designed to minimize the makespan under heterogeneous constraints, employing a greedy strategy to effectively address the scheduling challenges posed by heterogeneous workflows. We evaluate the performance of the proposed algorithm using randomly generated heterogeneous workflows and a corresponding heterogeneous computing platform. The experimental results demonstrate a 15.2% improvement in performance compared to existing state-of-the-art methods.
Keywords: Heterogeneous Computing, Workflow Scheduling, Constrained Resources, Minimal Makespan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214168 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments
Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas
Abstract:
Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.
Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28444167 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems
Authors: Chia-Hung Chen, Shangyao Yan
Abstract:
The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.
Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18144166 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques
Authors: R. Santhosh, T. Ravichandran
Abstract:
This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19184165 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
Authors: T. Vigneswari, M. A. Maluk Mohamed
Abstract:
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.
Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31044164 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets
Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei
Abstract:
The paper is a comparative study of two classical vari-ants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time, in classical CPU and, alternativaly, in parallel GPU implementation.
Keywords: convex feasibility problem, convergence analysis, ınpainting, parallel projection methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448