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Abstract—The development of heterogeneous computing clusters
provides robust computational support for large-scale workflows,
commonly seen in domains such as scientific computing and artificial
intelligence. However, the tasks within these large-scale workflows
are increasingly heterogeneous, exhibiting varying demands on
computing resources. This shift necessitates the integration of
resource-constrained considerations into the workflow scheduling
problem on heterogeneous computing platforms. In this study,
we propose a scheduling algorithm designed to minimize the
makespan under heterogeneous constraints, employing a greedy
strategy to effectively address the scheduling challenges posed
by heterogeneous workflows. We evaluate the performance of
the proposed algorithm using randomly generated heterogeneous
workflows and a corresponding heterogeneous computing platform.
The experimental results demonstrate a 15.2% improvement in
performance compared to existing state-of-the-art methods.

Keywords—Heterogeneous Computing, Workflow Scheduling,
Constrained Resources, Minimal Makespan.

I. INTRODUCTION

ACCELERATORS are playing an increasingly critical

role in high-performance computing, driven by the

rising power consumption of central processing units (CPUs)

and the relatively higher energy efficiency offered by

accelerators. Modern supercomputing clusters have long

incorporated heterogeneity within their computing nodes, with

an increasing number of applications offloading computational

tasks to accelerators to improve performance [8], [9].

To support diverse application requirements, contemporary

computing cluster nodes adopt a CPU-plus-accelerator (XPU)

architecture, consisting of multiple CPUs and several

accelerators within each node [10]. Fig. 1 illustrates a typical

heterogeneous computing node, where four accelerators

represent distinct device types (e.g., GPUs, TPUs), each

with varying computational capabilities. Due to the differing

communication protocols used by accelerators from different

manufacturers, direct communication between devices is not

feasible. Instead, data must be transferred to host memory via

PCIe [5], which then relays the data to the respective devices.
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Additionally, the bandwidth of data transmission between the

host and each device varies.

Moreover, applications themselves are increasingly

heterogeneous in nature [6]. Complex workflows integrating

data analysis, simulation, and artificial intelligence (AI)

methodologies are reshaping the use of supercomputers.

For instance, data processing tasks are best suited for

highly parallel GPUs, while TPUs, optimized for tensor

computations, are more appropriate for AI workloads. Fig. 2

provides an example of a heterogeneous workflow composed

of multiple dependent tasks, each characterized by distinct

workloads and corresponding accelerators optimized for their

execution.

The scheduling of heterogeneous workflows on

heterogeneous computing platforms poses significant

challenges, primarily due to the complex task dependencies

and the vast combinatorial space involving task-to-accelerator

mappings. The Heterogeneous Constrained Minimum

Makespan Scheduling algorithm (HCMMS) proposed in

this paper effectively addresses these challenges, offering

a solution that minimizes the overall workflow completion

time. The main contributions of this work are summarized as

follows:

• We propose HCMMS, a scheduling algorithm based

on a greedy policy, to tackle the problem of scheduling

heterogeneous workflows on heterogeneous computing

platforms.

• A data prefetching mechanism is introduced to enhance

communication between tasks, increasing the overlap

between communication and computation, which leads

to a significant reduction in workflow makespan.

• The static heuristic approach, HCMMS, demonstrates

scalability and can accommodate realistic, large-scale

workflow application scenarios. Experimental

results show that HCMMS outperforms existing

state-of-the-art approaches in terms of makespan

reduction.

The subsequent sections of this paper are structured as

follows: Chapter II offers a comprehensive overview of

related literature. Chapter III delineates the problem model,

while Chapter IV presents our proposed solution. Chapter V

discusses the experimental results obtained. Finally, Chapter

VI provides a summary of the entire paper.

World Academy of Science, Engineering and Technology
International Journal of Cognitive and Language Sciences

 Vol:18, No:11, 2024 

661International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
og

ni
tiv

e 
an

d 
L

an
gu

ag
e 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

11
, 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

90
1.

pd
f



Fig. 1 The architecture of heterogeneous computing platform

Fig. 2 An example of heterogeneous workflow

II. RELATED WORKS

List-based heuristic scheduling methods [1]–[3], [11]–[13]

have been extensively studied and applied to task scheduling

problems in heterogeneous computing environments. These

methods typically follow a common approach: tasks are

first prioritized to respect precedence constraints, after

which computational resources are allocated sequentially

to the prioritized tasks. A representative example is the

Heterogeneous Earliest Finish Time (HEFT ) algorithm [1],

proposed by Topcuoglu et al. in 2002. HEFT assigns an

upward rank to each task during the initial phase, where

this rank reflects the estimated critical path length from the

current task to the terminal task. In the subsequent phase,

the algorithm selects the computational resource for the

highest-priority task that minimizes the overall completion

time. The Predict Earliest Finish Time (PEFT ) algorithm

[2], introduced by Arabnejad et al. in 2013, refines task

prioritization by calculating an optimal cost value for each

task-processor pair, leading to a performance improvement

over HEFT. In 2018, He et al. proposed the Task Duplication

based Clustering Algorithm (TDCA) [3], which enhances

scheduling efficiency by optimizing parameter calculation,

task replication, and task merging strategies. The method

introduced in this paper also falls within the category of

list-based heuristic scheduling. However, it incorporates key

enhancements in task priority determination and resource

selection strategies, with the goal of optimizing workflow

makespan.

III. PROBLEM MODEL

A. Problem Background

In this chapter, we present the problem formulation,

with the mathematical notation summarized in Table I. We

consider a complex workflow comprising multiple dependent

tasks, modeled as a dataflow task graph, to be scheduled

on a fully connected heterogeneous computing platform.

Each task within the workflow is restricted to execution on

specific accelerators, owing to its code characteristics and

computational requirements.

B. Mathematical Formulation

Fig. 2 illustrates a dataflow task graph represented as

a directed acyclic graph (DAG) G(T,D), where T ={
τ1, τ2, ..., τ|T |

}
denotes the set of task nodes in the workflow,

each characterized by (size, output, devices). The set D =
{dj,k|τj , τk ∈ T} denotes the data dependencies between

tasks, where the execution of task τk depends on the data

produced by task τj . In Fig. 2, the number above each

task node τi represents the task’s workload (size), while

the number below corresponds to the amount of output data

(output). The set on the right side of each task node specifies

the accelerators capable of executing the task. We assume

the task graph contains a single source node τentry and a

single sink node τexit. For task graphs with multiple source

or sink nodes, this assumption can be met by introducing a

pseudo-source (or pseudo-sink) node with zero size and zero

output, connected as a predecessor (or successor) to all actual

source (or sink) nodes.

Fig. 1 illustrates a heterogeneous computing platform

denoted as P =
{
a1, a2, ..., a|P |

}
, where each accelerator am

is characterized by its processing speed (s) and bandwidth (b).
Data communication between different types of accelerators

is routed through the host. The legal start time for task τj on

accelerator am is denoted as

startam
τj = max

[
max

τi∈ζ(τj)
(receiveτi), avail[am]

]
(1)

where

receiveτi =

{
endτi , if m = n

endτi +
outputτi

bm
+

outputτi
bn

, otherwise
(2)

TABLE I
NOTATIONS

Symbol Definition

size Workload of task
output Output data size of task
devices The set of devices on which this task can run

s Computing speed of device
b Bidirectional communication bandwidth with the host

ζ(τj) All predecessors of task node τj
ξ(τj) All successors of task node τj

avail[am] Available time of the device am
startτj Start time of task τj
endτj End time of task τj
execam

τj Execution time of task τj on am
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while the execution time of task τj on am is denoted as

execam
τj =

sizeτj
sm

(3)

As shown in (2), the choice of accelerator for a given task

impacts not only its computation time (ct) but also the data

transfer time (dtt) from its parent tasks. This becomes a critical

factor when selecting an appropriate accelerator.

It is important to note that a prefetching mechanism is

employed to reduce data transfer time. Specifically, when

a parent task τi transfers its output data to the host, the

child task τj can begin reading these data immediately,

without waiting for all parent tasks to complete their transfers.

To further optimize data transfer, a first-in-first-out (FIFO)

reading mechanism is used, allowing τj to access the data as

soon as it is available on the host. This strategy minimizes the

data transfer time and thus contributes to reducing the overall

completion time of the entire workflow, as represented by

makespan = endτexit − startτentry . (4)

C. Optimization Object

A valid scheduling solution must satisfy the following

constraints:

• Resource constraint, each accelerator can only execute

one task at the same moment, i.e., any two tasks τi
and τj executed on the same accelerator should satisfy

[startτi , endτi ] ∩ [startτj , endτj ] = ∅.

• Inter-task dependency constraints, i.e., satisfying

startτk ≥ endτj for any dj,k ∈ D.

Based on the aforementioned system model, we formally

define the problem as follows: given a workflow G and a fully

connected heterogeneous computing platform P , the objective

is to find a feasible schedule that minimizes the makespan.

IV. THE PROPOSED METHOD

A. Task Sorting

Our proposed method adheres to the constraints of legal

scheduling by computing a matrix of dimensions |T | × |P |,
where each element LST [τj , am], for 1 ≤ j ≤ |T | and

1 ≤ m ≤ |P |, represents the legal start time of task τj
on accelerator am. A greedy strategy is then employed to

assign the most suitable accelerator to each task based on

the values in the LST matrix, yielding a near-optimal legal

schedule. Prior to calculating the LST matrix, the following

preliminary steps are necessary: (1) compute the remaining

estimated workload REW [τj , am] for each task-accelerator

pair, which serves as the basis for task prioritization and

resource allocation; and (2) calculate the priority Rank[τj ]
for each task, followed by ordering the tasks in non-increasing

order based on their Rank values.

The computation of REW [τj , am] and Rank[τj ] is detailed

in Algorithm 1. It is important to note that the data transfer

time between each task τj and its corresponding successor τk
is denoted as

dttm,n
j,k =

{
0, if m = n
outputτj

bm
+

outputτj
bn

, otherwise
. (5)

Algorithm 1 REW Rank(G,P )

1: Initialize a queue Q with exit node

2: while Q is not empty do
3: Dequeue a task node τj from Q
4: for Each legal device am in devices of τj do
5: if τj = τexit then
6: REW [τj , am] = ctj,m
7: else
8: REW [τj , am] = maxτk∈ξ(τj)[minan∈devices(τk)

(REW [τk, an]+ctj,m+dttm,n
j,k )]

9: end if
10: end for
11: Rank[τj ] =

∑
am∈devices

REW [τj ,am]
|devices|

12: maxSuccRank = maxτk∈ξ(τj)Rank[τk]

13: if maxSuccRank ≥ Rank[τj ] then
14: for Each legal device am in devices of τj do
15: REW [τj , am] = REW [τj , am]× maxSuccRank

Rank[τj ]
×

α
16: end for
17: Rank[τj ] = maxSuccRank × α
18: end if
19: for τi in ζ(τj) do
20: Enqueue τi in Q if τi’s all immediate successors have

been processed

21: end for
22: end while
23: return REW,Rank

In step 15, the parameter α is a hyperparameter slightly

greater than 1; for our evaluations, we utilized a value of 1.01.

B. Accelerator Allocation

We compute LST sequentially for the tasks in sorted order

and assign each task to the accelerator that minimizes the

sum of LST and REW . Algorithm 2 provides a detailed

description of the iterative computations for both LST and the

allocation process. Here, AST [τj ] represents the actual start

time of task τj . As a result, we obtain the specific accelerator

assigned to each task along with their respective start execution

times, thus yielding a legal schedule.

C. Complexity Analysis

The algorithmic complexity of HCMMS consists of

two primary components: Algorithm 1 and Algorithm 2. In

Algorithm 1, the computation of REW processes each edge

in the task graph exactly once and iterates over no more than

|P | accelerators to identify the minimum. Consequently, the

overall complexity of the REW computation does not exceed

O(|D| × |P |). The complexity associated with computing

the priority Rank for each task is also bounded by O(|P |),
resulting in an overall complexity for Rank computation that

does not exceed O(|T | × |P |). Assuming that |D| is greater

than |T |, the computational complexity of Algorithm 1 is

therefore capped at O(|D| × |P |).
In Algorithm 2, the initial complexity of sorting all tasks

is O(|T | log |T |). The subsequent computational complexity
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Algorithm 2 Accelerator Allocation

1: REW,Rank = REW Rank(G,P )
2: Sorting tasks based on non-increasing Rank values

3: for τj in sorted tasks do
4: if τj = τentry then
5: LST [τj ] = 0
6: else
7: for Each legal device am in devices of τj do
8: LST [τj , am] = max[avail[am],

maxτi∈ζ(τj)(receiveτi)]
9: end for

10: end if
11: alloc[τj ] = argmin

am

(LST [τj ] +REW [τj ])

12: AST [τj ] = LST [τj , alloc[τj ]]

13: avail [alloc[τj ]] = AST [τj ] +
sizeτj

salloc[τj ]

14: end for

is primarily determined by the computation of LST for each

task-accelerator pair, as the calculations for alloc, AST , and

avail are performed in constant time. As indicated in step 8,

the overhead for computing LST for each task-accelerator

pair is O(|ζ(τj)|), which leads to an overall overhead for

LST across all task-accelerator pairs for a single accelerator

of O(|D|). Therefore, the total computational complexity for

LST does not exceed O(|D|× |P |), given that the number of

available devices per task is limited to |P |.
Thus, the computational complexity of Algorithm 2 can

be expressed as O(|T | log |T | + |D| × |P |), which simplifies

to O(|D| × |P |). Overall, the algorithmic complexity of

HCMMS is therefore O(|D| × |P |).

V. EVALUATION

A. Comparison with HEFT and PEFT

To evaluate the effectiveness of our proposed scheduling

algorithm, we randomly generated a series of heterogeneous

workflows and a computing platform consisting of three

heterogeneous accelerators. Initially, we compared the

performance of HCMMS with that of PEFT using

the example illustrated in Fig. 2. The Gantt chart

depicting the scheduling results is presented in Fig. 3.

This comparison demonstrates that HCMMS significantly

outperforms PEFT in terms of makespan.

Considering the task graph of this workflow, upon the

completion of task τ1, tasks τ2, τ3, τ4, and τ5 simultaneously

meet their dependency conditions, with three accelerators

currently available. As shown in Fig. 2, the direct and indirect

successors of τ5 are [τ9, τ12, τ14], which represent the tasks

with the fewest successors among those that can currently

be executed. Consequently, our scheduler assigns the three

available accelerators to tasks τ2, τ3, and τ4 to minimize the

overall completion time of the workflow.

We conducted a comparative analysis of HCMMS,

HEFT , and PEFT across 200 randomly generated

heterogeneous workflows. In these experiments, the number of

tasks was uniformly distributed between 20 and 1000, while

TABLE II
PAIR-WISE MAKESPAN COMPARISON OF THE SCHEDULING ALGORITHMS

HEFT PEFT

HCMMS
better 145 102
equal 12 27
worse 43 71

the task sizes followed a normal distribution with a mean

ranging from 5 to 50. Similarly, the output values of the tasks

were normally distributed with a mean between 2 and 20. The

available accelerators for each task were generated randomly.

The results of our experiments are summarized in Table

II, which clearly demonstrates that HCMMS consistently

outperforms both HEFT and PEFT in terms of makespan.

B. Scalability of the Proposed Method

We evaluated the scalability of our proposed approach

within a randomly generated cluster comprising 20
heterogeneous accelerators. Fig. 4 illustrates the completion

times for workflows containing between 100 and 1000 tasks

on this heterogeneous computing cluster. The results indicate

that the completion times for the workflows increase steadily

with the number of tasks, without exhibiting a sharp rise in

completion times for larger workflows. This demonstrates

that the proposed method exhibits robust scalability across

workflows of varying sizes.

C. Ablation Experiment

As discussed in Chapter I, we incorporated a data

prefetching mechanism to reduce the waiting time for data

transfer among tasks. In this subsection, we design ablation

experiments to evaluate the effectiveness of this measure.

In the control group, we removed the data prefetching

mechanism, allowing each task to commence data reading only
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Fig. 3 The Gantt charts illustrating the schedules for the given DAG in
Fig. 2: (a) the schedule produced by the HCMMS, with a makespan of

43; (b) the schedule produced by the PEFT , with a makespan of 49
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Fig. 4 Completion times for workflows of diverse sizes
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Fig. 5 The Gantt charts illustrating the schedules as follows: (a) the
schedule produced by the HCMMS without data prefetching mechanism,

with a makespan of 89; (b) the schedule produced by the complete
HCMMS, with a makespan of 57

after all its preceding tasks have transferred their data to the

host.

We conducted tests using a workflow case comprising 15
tasks and 34 data dependencies, executed on a heterogeneous

computing platform featuring three accelerators with varying

computational speeds and communication bandwidths. The

Gantt chart presented in Fig. 5 illustrates the scheduling

outcomes. It is evident that the elimination of the data

prefetching mechanism not only delays the actual start times

of the tasks but also impacts the processors allocated to each

task, resulting in an additional 56% increase in the makespan

of the workflow.

VI. CONCLUSION AND FUTURE WORK

Heterogeneous computing resources offer effective

hardware support for accelerating workflows; however, the

successful offloading of heterogeneous tasks to suitable

acceleration devices is essential for maximizing resource

utilization and minimizing workflow completion times. In

this paper, we present HCMMS, a scheduling algorithm

based on a greedy policy that delivers an efficient scheduling

solution for heterogeneous workflows on heterogeneous

computing platforms. Nevertheless, scheduling individual

workflows on such platforms continues to pose challenges,

including low resource utilization and uneven resource

loading. In our future work, we will address the problem of

scheduling multiple workflows on heterogeneous platforms to

ensure optimal utilization of hardware resources.

REFERENCES

[1] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[2] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for
heterogeneous systems by an optimistic cost table,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[3] K. He, X. Meng, Z. Pan, L. Yuan and P. Zhou, “A Novel
Task-Duplication Based Clustering Algorithm for Heterogeneous
Computing Environments,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 1, pp. 2-14, 1 Jan. 2019.

[4] Paraskevas, Kyriakos. “Enabling Direct-Access Global Shared Memory
for Distributed Heterogeneous Computing.” (2023).

[5] Lawley, Jason. “Understanding Performance of PCI Express Systems.”
WP350 (v1. 2). **linx 97 2014.

[6] Dongarra, Jack, and Alexey L. Lastovetsky. “High performance
heterogeneous computing.” John Wiley & Sons, 2009.

[7] Mittal, S. and Vetter, J.S., 2015. “A survey of CPU-GPU heterogeneous
computing techniques.” ACM Computing Surveys (CSUR), 47(4),
pp.1-35.

[8] L. Wu et al., “DOT: Decentralized Offloading of Tasks in OFDMA-Based
Heterogeneous Computing Networks,” in IEEE Internet of Things Journal,
vol. 9, no. 20, pp. 20071-20082, 15 Oct.15, 2022.

[9] A. Reisizadeh, S. Prakash, R. Pedarsani and A. S. Avestimehr, “Coded
Computation Over Heterogeneous Clusters,” in IEEE Transactions on
Information Theory, vol. 65, no. 7, pp. 4227-4242, July 2019.

[10] J. Kim, S. Lee, B. Johnston and J. S. Vetter, “IRIS: A
Performance-Portable Framework for Cross-Platform Heterogeneous
Computing,” in IEEE Transactions on Parallel and Distributed Systems,
vol. 35, no. 10, pp. 1796-1809, Oct. 2024.

[11] M. I. Daoud and N. Kharma, “A high performance algorithm for
static task scheduling in heterogeneous distributed computing systems,”
J. Parallel Distrib. Comput., vol. 68, no. 4, pp. 399–409, 2008.

[12] C. -W. Tsai, W. -C. Huang, M. -H. Chiang, M. -C. Chiang and C.
-S. Yang, “A Hyper-Heuristic Scheduling Algorithm for Cloud,” in IEEE
Transactions on Cloud Computing, vol. 2, no. 2, pp. 236-250, 1 April-June
2014.

[13] Mönch, Lars, Hari Balasubramanian, John W. Fowler, and Michele
E. Pfund. “Heuristic scheduling of jobs on parallel batch machines
with incompatible job families and unequal ready times.” Computers &
Operations Research 32, no. 11 (2005): 2731-2750.

World Academy of Science, Engineering and Technology
International Journal of Cognitive and Language Sciences

 Vol:18, No:11, 2024 

665International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
og

ni
tiv

e 
an

d 
L

an
gu

ag
e 

Sc
ie

nc
es

 V
ol

:1
8,

 N
o:

11
, 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

90
1.

pd
f


