Search results for: Newton's method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8127

Search results for: Newton's method

8067 Numerical Analysis of Electrical Interaction between two Axisymmetric Spheroids

Authors: Kuan-Liang Liu, Eric Lee, Jung-Jyh Lee, Jyh-Ping Hsu

Abstract:

The electrical interaction between two axisymmetric spheroidal particles in an electrolyte solution is examined numerically. A Galerkin finite element method combined with a Newton-Raphson iteration scheme is proposed to evaluate the spatial variation in the electrical potential, and the result obtained used to estimate the interaction energy between two particles. We show that if the surface charge density is fixed, the potential gradient is larger at a point, which has a larger curvature, and if surface potential is fixed, surface charge density is proportional to the curvature. Also, if the total interaction energy against closest surface-to-surface curve exhibits a primary maximum, the maximum follows the order (oblate-oblate) > (sphere-sphere)>(oblate-prolate)>(prolate-prolate), and if the curve has a secondary minimum, the absolute value of the minimum follows the same order.

Keywords: interaction energy, interaction force, Poisson-Boltzmann equation, spheroid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
8066 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
8065 Evaluation of Linear and Geometrically Nonlinear Static and Dynamic Analysis of Thin Shells by Flat Shell Finite Elements

Authors: Djamel Boutagouga, Kamel Djeghaba

Abstract:

The choice of finite element to use in order to predict nonlinear static or dynamic response of complex structures becomes an important factor. Then, the main goal of this research work is to focus a study on the effect of the in-plane rotational degrees of freedom in linear and geometrically non linear static and dynamic analysis of thin shell structures by flat shell finite elements. In this purpose: First, simple triangular and quadrilateral flat shell finite elements are implemented in an incremental formulation based on the updated lagrangian corotational description for geometrically nonlinear analysis. The triangular element is a combination of DKT and CST elements, while the quadrilateral is a combination of DKQ and the bilinear quadrilateral membrane element. In both elements, the sixth degree of freedom is handled via introducing fictitious stiffness. Secondly, in the same code, the sixth degrees of freedom in these elements is handled differently where the in-plane rotational d.o.f is considered as an effective d.o.f in the in-plane filed interpolation. Our goal is to compare resulting shell elements. Third, the analysis is enlarged to dynamic linear analysis by direct integration using Newmark-s implicit method. Finally, the linear dynamic analysis is extended to geometrically nonlinear dynamic analysis where Newmark-s method is used to integrate equations of motion and the Newton-Raphson method is employed for iterating within each time step increment until equilibrium is achieved. The obtained results demonstrate the effectiveness and robustness of the interpolation of the in-plane rotational d.o.f. and present deficiencies of using fictitious stiffness in dynamic linear and nonlinear analysis.

Keywords: Flat shell, dynamic analysis, nonlinear, Newmark, drilling rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
8064 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
8063 Shape Restoration of the Left Ventricle

Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan

Abstract:

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
8062 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
8061 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
8060 Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F. Aksit, Ilyas Kandemir, Kayhan Gulez

Abstract:

In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for the vertical flight mode has also been developed and its performance has been tested with several simulations.

Keywords: Control, Dynamic model, LQR, Quadrotor, Tilt-wing, VTOL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4312
8059 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Authors: M. Altekin, R. F. Yükseler

Abstract:

Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

Keywords: Bending, nonlinear, plate, point support, shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
8058 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
8057 Blind Identification of MA Models Using Cumulants

Authors: Mohamed Boulouird, Moha M'Rabet Hassani

Abstract:

In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.

Keywords: Cumulants, Identification, MA models, Parameter estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
8056 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li

Abstract:

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
8055 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin

Abstract:

Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.

Keywords: Gravity gradient, accelerometer, gravity gradient sensor, single-axis rotation modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
8054 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis

Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon

Abstract:

In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.

Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076
8053 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
8052 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel

Abstract:

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.

Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
8051 Seat Assignment Problem Optimization

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.

Keywords: Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM), A Real Word Assignment Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
8050 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

Authors: A. M. El-Zonkoly

Abstract:

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
8049 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.

Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
8048 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
8047 Design and Analysis of a Novel 8-DOF Hybrid Manipulator

Authors: H. Mohammadipanah, H. Zohoor

Abstract:

This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.

Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
8046 The Differential Transform Method for Advection-Diffusion Problems

Authors: M. F. Patricio, P. M. Rosa

Abstract:

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Keywords: Method of Lines, Differential Transform Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
8045 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
8044 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
8043 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays

Authors: Kreangkri Ratchagit

Abstract:

This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.

Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
8042 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
8041 A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

Authors: S. Raja Balachandar, K. Kannan

Abstract:

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Keywords: Set covering problem, velocity, gravitational force, Newton's law, meta heuristic, combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
8040 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
8039 Multi-Line Power Flow Control using Interline Power Flow Controller (IPFC) in Power Transmission Systems

Authors: A.V.Naresh Babu, S.Sivanagaraju, Ch.Padmanabharaju, T.Ramana

Abstract:

The interline power flow controller (IPFC) is one of the latest generation flexible AC transmission systems (FACTS) controller used to control power flows of multiple transmission lines. This paper presents a mathematical model of IPFC, termed as power injection model (PIM). This model is incorporated in Newton- Raphson (NR) power flow algorithm to study the power flow control in transmission lines in which IPFC is placed. A program in MATLAB has been written in order to extend conventional NR algorithm based on this model. Numerical results are carried out on a standard 2 machine 5 bus system. The results without and with IPFC are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

Keywords: flexible AC transmission systems (FACTS), interline power flow controller (IPFC), power injection model (PIM), power flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
8038 Analytical Solutions of Kortweg-de Vries(KdV) Equation

Authors: Foad Saadi, M. Jalali Azizpour, S.A. Zahedi

Abstract:

The objective of this paper is to present a comparative study of Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Homotopy Analysis Method (HAM) for the semi analytical solution of Kortweg-de Vries (KdV) type equation called KdV. The study have been highlighted the efficiency and capability of aforementioned methods in solving these nonlinear problems which has been arisen from a number of important physical phenomenon.

Keywords: Variational Iteration Method (VIM), HomotopyPerturbation Method (HPM), Homotopy Analysis Method (HAM), KdV Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374