Numerical Analysis of Electrical Interaction between two Axisymmetric Spheroids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Numerical Analysis of Electrical Interaction between two Axisymmetric Spheroids

Authors: Kuan-Liang Liu, Eric Lee, Jung-Jyh Lee, Jyh-Ping Hsu

Abstract:

The electrical interaction between two axisymmetric spheroidal particles in an electrolyte solution is examined numerically. A Galerkin finite element method combined with a Newton-Raphson iteration scheme is proposed to evaluate the spatial variation in the electrical potential, and the result obtained used to estimate the interaction energy between two particles. We show that if the surface charge density is fixed, the potential gradient is larger at a point, which has a larger curvature, and if surface potential is fixed, surface charge density is proportional to the curvature. Also, if the total interaction energy against closest surface-to-surface curve exhibits a primary maximum, the maximum follows the order (oblate-oblate) > (sphere-sphere)>(oblate-prolate)>(prolate-prolate), and if the curve has a secondary minimum, the absolute value of the minimum follows the same order.

Keywords: interaction energy, interaction force, Poisson-Boltzmann equation, spheroid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081735

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474

References:


[1] R.J. Hunter, Foundations of Colloid Science, Vol. I, Oxford University Press, London, 1992.
[2] B.V. Derjaguin and L.D. Landau, Acta Phys.-Chim. USSR, 14 (1941) 633.
[3] G.M. Bell, S. Levine, and L.N. McCartney, J. Colloid Interface Sci., 33 (1970) 335.
[4] H. Ohshima, D.Y.C. Chan, T.W. Healy and L.R. White, J. Colloid Interface Sci., 92 (1983) 232.
[5] S.L. Carnie and D.Y.C. Chan, J. Colloid Interface Sci., 155 (1993) 297.
[6] J.E. Sader, S.L. Carnie and D.Y.C. Chan, J. Colloid Interface Sci., 171 (1995) 46.
[7] C.E. McNamee, Y. Tsujii, H. Ohshima, et al., Langmuir, 20 (2004) 1953
[8] H. Ohshima, Lngmuir, 23 (2007) IX.
[9] V Krautler and P.H. Hunenberger, Mol. Simul., 34 (2008) 491.
[10] H. Ohshima, J. Colloid Interface Sci., 328 (2008) 3.
[11] N.E. Hoskins and S. Levine, Philos. Trans. R. Soc. London A 248, (1956) 433.
[12] J.E. Ledbetter, T.L. Croxton and D.A. McQuarrie, Can. J. Chem., 59 (1981) 1860.
[13] S.L. Carnie, D.Y.C. Chan and J. Stankovich, J. Colloid Interface Sci., 165 (1994) 116.
[14] B.K.C. Chan and D.Y.C. Chan, J. Colloid Interface Sci., 92 (1983) 281.
[15] A.E. James and D.J.A. Williams, J. Colloid Interface Sci., 107 (1985) 44.
[16] Y.J. You and C. Harvey, J. Comput. Chem., 14 (1993) 484.
[17] F.R. Chou Chang and G. Sposito, J. Colloid Interface Sci., 163 (1994) 19.
[18] W.R. Bowen and A.O. Sharif, J. Colloid Interface Sci., 187 (1997) 363.
[19] B.T. Liu and J.P. Hsu, J. Chem. Phys., 128 (2008) 104509.
[20] J.J. Feng and W.Y. Wu, J. Fluid Mech., 264 (1994) 41.
[21] J.P. Hsu and B.T. Liu, J. Colloid Interface Sci., 178 (1996) 785.
[22] J.P. Hsu, C.C. Kuo and M.H. Ku, Electrophoresis, 29 (2008) 348.
[23] J.P. Hsu, C.Y. Chen and D.J. Lee, et al, J. Colloid Interface Sci., 325 (2008) 516.
[24] Y.C. Kuo and J.P. Hsu, J. Colloid Interface Sci., 156 (1993) 250.
[25] B.M. Irons, Int. J. Num. Methods Eng., 2 (1970) 5.
[26] P. Hood, Int. J. Num. Methods Eng., 10 (1976) 379.