WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/1035,
	  title     = {Evaluation of Linear and Geometrically Nonlinear Static and Dynamic Analysis of Thin Shells by Flat Shell Finite Elements},
	  author    = {Djamel Boutagouga and  Kamel Djeghaba},
	  country	= {},
	  institution	= {},
	  abstract     = {The choice of finite element to use in order to predict
nonlinear static or dynamic response of complex structures becomes
an important factor. Then, the main goal of this research work is to
focus a study on the effect of the in-plane rotational degrees of
freedom in linear and geometrically non linear static and dynamic
analysis of thin shell structures by flat shell finite elements. In this
purpose: First, simple triangular and quadrilateral flat shell finite
elements are implemented in an incremental formulation based on the
updated lagrangian corotational description for geometrically
nonlinear analysis. The triangular element is a combination of DKT
and CST elements, while the quadrilateral is a combination of DKQ
and the bilinear quadrilateral membrane element. In both elements,
the sixth degree of freedom is handled via introducing fictitious
stiffness. Secondly, in the same code, the sixth degrees of freedom in
these elements is handled differently where the in-plane rotational
d.o.f is considered as an effective d.o.f in the in-plane filed
interpolation. Our goal is to compare resulting shell elements. Third,
the analysis is enlarged to dynamic linear analysis by direct
integration using Newmark-s implicit method. Finally, the linear
dynamic analysis is extended to geometrically nonlinear dynamic
analysis where Newmark-s method is used to integrate equations of
motion and the Newton-Raphson method is employed for iterating
within each time step increment until equilibrium is achieved. The
obtained results demonstrate the effectiveness and robustness of the
interpolation of the in-plane rotational d.o.f. and present deficiencies
of using fictitious stiffness in dynamic linear and nonlinear analysis.},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {7},
	  number    = {2},
	  year      = {2013},
	  pages     = {168 - 174},
	  ee        = {https://publications.waset.org/pdf/1035},
	  url   	= {https://publications.waset.org/vol/74},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 74, 2013},
	}