Search results for: Model reference adaptive control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11015

Search results for: Model reference adaptive control.

10955 An Adaptive Setting of Frequency Relay with Consideration on Load and Power System Dynamics

Authors: J. Mirzaei, H. Kazemi Kargar

Abstract:

This paper presents a new approach for setting frequency relays based on the dynamic of power system. A simplified model of the power system based on the load-frequency control loop will be developed to be used instead of the complete model of the power system. The effects of the equipments and their responses on the frequency variations of the power plant will be investigated and then a method for adaptive settings of frequency relays will be explained. The proposed method will be investigated by analyzing a simplified model of a power plant by MATLAB software.

Keywords: Adaptive Settings, Frequency Relay (FR), PowerSystem Dynamics, SFR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
10954 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
10953 SystemC Modeling of Adaptive Least Mean Square Filter

Authors: Kyu Han Kim, Soon Kyu Kwon, Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we demonstrate the adaptive least-mean-square (LMS) filter modeling using SystemC. SystemC is a modeling language that allows designer to model both hardware and software component and makes it possible to design from high level system of abstraction to low level system of abstraction. We produced five adaptive least-mean-square filter models that are classed as five abstraction levels using SystemC proceeding from the abstract model to the more concrete model.

Keywords: Adaptive Filter, Least-Mean-Square Algorithm, SystemC, Transversal Fir Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
10952 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model

Authors: M.Sujaritha, S. Annadurai

Abstract:

An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.

Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
10951 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
10950 Adaptive Transmission Scheme Based on Channel State in Dual-Hop System

Authors: Seung-Jun Yu, Yong-Jun Kim, Jung-In Baik, Hyoung-Kyu Song

Abstract:

In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed.

Keywords: Adaptive transmission, channel state, dual-hop, hierarchical modulation, relay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
10949 Stereotype Student Model for an Adaptive e-Learning System

Authors: Ani Grubišić, Slavomir Stankov, Branko Žitko

Abstract:

This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.

Keywords: Adaptive e-learning systems, adaptive courseware, stereotypes, Bloom's knowledge taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
10948 Neural Network Controller for Mobile Robot Motion Control

Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic

Abstract:

In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.

Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
10947 Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control

Authors: Sudeept Mohan, Surekha Bhanot

Abstract:

The problem of manipulator control is a highly complex problem of controlling a system which is multi-input, multioutput, non-linear and time variant. In this paper some adaptive fuzzy, and a new hybrid fuzzy control algorithm have been comparatively evaluated through simulations, for manipulator control. The adaptive fuzzy controllers consist of self-organizing, self-tuning, and coarse/fine adaptive fuzzy schemes. These controllers are tested for different trajectories and for varying manipulator parameters through simulations. Various performance indices like the RMS error, steady state error and maximum error are used for comparison. It is observed that the self-organizing fuzzy controller gives the best performance. The proposed hybrid fuzzy plus integral error controller also performs remarkably well, given its simple structure.

Keywords: Hybrid fuzzy, Self-organizing, Self-tuning, Trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
10946 Identifying the Gap between Consumers with Down Syndrome and Apparel Brands

Authors: Lucky Farha, Martha L. Hall

Abstract:

The current adaptive clothing brands are limited in numbers and specific categories. This study explores clothing challenges for children with Down syndrome and factors that influence their perception of adaptive clothing brands. Another aim of this study was to explore brands' challenges in the adaptive business and factors that influence their perceptions towards the adaptive market. In order to determine the market barriers affecting adaptive target market needs, we applied Technology Acceptance Model. After interviewing and surveying parents/caregivers having children with Down syndrome and current adaptive brands, the results found education as the significant gap in the adaptive clothing market yet to be overcome. Based on the finding, several recommendations were suggested to improve the current barriers in the adaptive clothing market.

Keywords: Adaptive fashion, disability, functional clothing, clothing needs assessment, Down syndrome, clothing challenge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367
10945 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter

Authors: Mounir Sayadi, Farhat Fnaiech

Abstract:

In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.

Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
10944 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: Adaptive control, Centroidal Voronoi Tessellations, composite adaptation, coordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
10943 Overview of Adaptive Spline Interpolation

Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu

Abstract:

In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
10942 Robust Adaptive Control of a Robotic Manipulator with Unknown Dead Zone and Friction Torques

Authors: Ibrahim F. Jasim, Najah F. Jasim

Abstract:

The problem of controlling a two link robotic manipulator, consisting of a rotating and a prismatic links, is addressed. The actuations of both links are assumed to have unknown dead zone nonlinearities and friction torques modeled by LuGre friction model. Because of the existence of the unknown dead zone and friction torque at the actuations, unknown parameters and unmeasured states would appear to be part of the overall system dynamics that need for estimation. Unmeasured states observer, unknown parameters estimators, and robust adaptive control laws have been derived such that closed loop global stability is achieved. Simulation results have been performed to show the efficacy of the suggested approach.

Keywords: Adaptive Robust Control, Dead Zone, Friction Torques, Robotic Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
10941 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.

Keywords: Adaptive Control, Morlet Wavelets, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
10940 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.

Keywords: Control system, hydroponics, machine learning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
10939 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System

Authors: Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh

Abstract:

The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.

Keywords: Validation, verification, formal, theorem proving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
10938 Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Authors: A.Venkadesan, S.Himavathi, A.Muthuramalingam

Abstract:

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Keywords: Sensor-less operation, vector-controlled IM drives, SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
10937 Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.

Keywords: Adaptive Impedance Control, Function Approximation Technique (FAT), unknown time-varying environment position and stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
10936 Adaptive Block State Update Method for Separating Background

Authors: Youngsuck Ji, Youngjoon Han, Hernsoo Hahn

Abstract:

In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.

Keywords: Block-state, Edge component, Reference backgroundi, Artificial illumination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
10935 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari

Abstract:

This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

Keywords: Wind Turbine, Simulink, Reference Tracking Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
10934 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System

Authors: D. Elleuch, T. Damak

Abstract:

Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.

Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
10933 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

Authors: Ibrahim F. Jasim

Abstract:

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
10932 ZMP Based Reference Generation for Biped Walking Robots

Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven

Abstract:

Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.

Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
10931 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
10930 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: Air conditioning system, GPC, dead time, Air supply control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
10929 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
10928 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control

Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi

Abstract:

In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.

Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
10927 Formal Specification of Web Services Applications for Digital Reference Services of Library Information System

Authors: Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh

Abstract:

Digital reference service is when a traditional library reference service is provided electronically. In most cases users do not get full satisfaction from using digital reference service due to variety of reasons. This paper discusses the formal specification of web services applications for digital reference services (WSDRS). WSDRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient digital way of satisfying users’ need in the reference section of libraries. Informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool.

Keywords: Formal, specifications, web services, digital reference services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
10926 Stabilization of Nonnecessarily Inversely Stable First-Order Adaptive Systems under Saturated Input

Authors: M. De la Sen, O. Barambones

Abstract:

This paper presents an indirect adaptive stabilization scheme for first-order continuous-time systems under saturated input which is described by a sigmoidal function. The singularities are avoided through a modification scheme for the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be non-singular and then the estimated plant model is controllable. The modification mechanism involves the use of a hysteresis switching function. An alternative hybrid scheme, whose estimated parameters are updated at sampling instants is also given to solve a similar adaptive stabilization problem. Such a scheme also uses hysteresis switching for modification of the parameter estimates so as to ensure the controllability of the estimated plant model.

Keywords: Hybrid dynamic systems, discrete systems, saturated input, control, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402