Search results for: MILRES (national wind energy system)
10966 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network
Authors: Sidhartha Panda, N.P.Padhy
Abstract:
Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.
Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244810965 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.
Keywords: Dynamic model, Jeju power system, pitch angle control, PSS/E, wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176910964 The Nexus between Wind Energy, Biodiversity Protection and Social Acceptance: Evidence of Good Practices from Greece, Latvia and Poland
Authors: Christos Bouras, Eirini Stergiou, Charitini Karakostaki, Vasileios Tzanos, Vasileios Kokkinos
Abstract:
Wind power represents a major pathway to curtailing greenhouse gas emissions and thus reducing the rate of climate change. A wind turbine runs practically emission-free for 20 years, representing one of the most environmentally sustainable sources of energy. Nevertheless, environmental and biodiversity concerns can often slow down or halt the deployment of wind farms due to local public opposition. This opposition is often fuelled by poor relationships between wind energy stakeholders and civil society, which in many cases led to conflictual protests and property damage. In this context, addressing these concerns is essential in order to facilitate the proliferation of wind farms in Europe and the phase-out of fossil fuels from the energy mix. The aim of this study is to identify a number of good practices and cases to avoid increasing biodiversity protection at all stages of wind farms’ lifecycle in three participating countries, namely Greece, Latvia, and Poland. The results indicate that although available technological solutions are already being exploited worldwide, in these countries, there is still room for improvement. To address this gap, a set of policy recommendations is proposed to accomplish the wind energy targets in the near future while simultaneously mitigating the pertinent biodiversity risks.
Keywords: Biodiversity protection, environmental impact, social acceptance, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22710963 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade
Authors: T. Y. Liu, C. H Lin., Y. M Ferng
Abstract:
Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.
Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.
Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.
Keywords: Horizontal Axis Wind Turbine, turbulence model, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216110962 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability
Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang
Abstract:
Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181910961 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui
Abstract:
Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.Keywords: Hybrid power system, power generation, solar and wind energy potential, Lower Sindh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180110960 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.
Keywords: Aspiration efficiency, energy, particulate matter, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47710959 The Influence of Voltage Flicker for the Wind Generator upon Distribution System
Authors: Jin-Lung Guan, Jyh-Cherng Gu, Ming-Ta Yang, Hsin-Hung Chang, Chun-Wei Huang, Shao-Yu Huang
Abstract:
One of the most important power quality issues is voltage flicker. Nowadays this issue also impacts the power system all over the world. The fact of the matter is that the more and the larger capacity of wind generator has been installed. Under unstable wind power situation, the variation of output current and voltage have caused trouble to voltage flicker. Hence, the major purpose of this study is to analyze the impact of wind generator on voltage flicker of power system. First of all, digital simulation and analysis are carried out based on wind generator operating under various system short circuit capacity, impedance angle, loading, and power factor of load. The simulation results have been confirmed by field measurements.
Keywords: Wind Generator, Voltage Flicker
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202110958 Comparison between Lift and Drag-Driven VAWT Concepts on Low-Wind Site AEO
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This work presents a comparison between the Annual Energy Output (AEO) of two commercial vertical-axis wind turbines (VAWTs) for a low-wind urban site: both a drag-driven and a liftdriven concepts are examined in order to be installed on top of the new Via dei Giustinelli building, Trieste (Italy). The power-curves, taken from the product specification sheets, have been matched to the wind characteristics of the selected installation site. The influence of rotor swept area and rated power on the performance of the two proposed wind turbines have been examined in detail, achieving a correlation between rotor swept area, electrical generator size and wind distribution, to be used as a guideline for the calculation of the AEO.Keywords: Annual Energy Output, micro-generationtechnology, urban environment, Vertical-Axis Wind Turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602810957 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency
Authors: Abdulrahman M. Homadi
Abstract:
As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.Keywords: Solar panels, elevation, wind direction, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237110956 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.
Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77910955 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.
Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392810954 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306510953 Development of Condition Monitoring System with Control Functions for Wind Turbines
Authors: Joon-Young Park, Beom-Joo Kim, Jae-Kyung Lee
Abstract:
As an effort to promote wind power industry in Korea, Korea South-East Power Corporation has been developing 22MW YeungHeung wind farm consisting of nine 2 to 3MW wind turbines supplied by three manufacturers. To maximize its availability and reliability and to solve the difficulty of operating three kinds of SCADA systems, Korea Electric Power Corporation has been developing a condition monitoring system integrated with control functions. This paper presents the developed condition monitoring system and its application to YeungHeung wind test bed, and the design of its control functions.Keywords: condition monitoring, control function, reliability, wind turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243210952 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.
Keywords: Energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120710951 Power System Load Shedding: Key Issues and New Perspectives
Authors: H. Bevrani, A. G. Tikdari, T. Hiyama
Abstract:
Optimal load shedding (LS) design as an emergency plan is one of the main control challenges posed by emerging new uncertainties and numerous distributed generators including renewable energy sources in a modern power system. This paper presents an overview of the key issues and new challenges on optimal LS synthesis concerning the integration of wind turbine units into the power systems. Following a brief survey on the existing LS methods, the impact of power fluctuation produced by wind powers on system frequency and voltage performance is presented. The most LS schemas proposed so far used voltage or frequency parameter via under-frequency or under-voltage LS schemes. Here, the necessity of considering both voltage and frequency indices to achieve a more effective and comprehensive LS strategy is emphasized. Then it is clarified that this problem will be more dominated in the presence of wind turbines.
Keywords: Load shedding, emergency control, voltage, frequency, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413910950 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)
Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)
Abstract:
wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation
Keywords: Fluent Software, Iranian architecture, wind catcher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449310949 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method
Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari
Abstract:
This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.Keywords: Wind Turbine, Simulink, Reference Tracking Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106410948 Optimal Design and Intelligent Management of Hybrid Power System
Authors: Reza Sedaghati
Abstract:
Given the increasing energy demand in the world as well as limited fossil energy fuel resources, it is necessary to use renewable energy resources more than ever. Developing a hybrid energy system is suggested to overcome the intermittence of renewable energy resources such as sun and wind, in which the excess electrical energy can be converted and stored. While these resources store the energy, they can provide a more reliable system that is really suitable for off-grid applications. In hybrid systems, a methodology for optimal sizing of power generation systems components is of great importance in terms of economic aspects and efficiency. In this study, a hybrid energy system is designed to supply an off-grid sample load pattern with the aim of supplying necessary energy and minimizing the total production cost throughout the system life as well as increasing the reliability. For this purpose, the optimal size and the cost function of these resources is determined and minimized using evolutionary algorithms and system efficiency is studied with real-time load and meteorological information of Kazerun, a city in southern Iran under different conditions.Keywords: Hybrid energy system, intelligent method, optimal size, minimal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147410947 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines
Authors: Jun Liu, Feihang Zhou, Gungyi Wang
Abstract:
This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.
Keywords: Damping, direct-driven PMSG wind power system, mechanical vibration, torque control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139110946 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait
Authors: Obaid AlOtaibi, Salman Hussain
Abstract:
Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.Keywords: Kuwait, renewable energy, spatial analysis, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90010945 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.
Keywords: Renault number, porous media, wind damping, wind tunnel test, building ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60010944 Evaluation of an Offshore Wind Power Project: Economic, Strategic and Environmental Value
Authors: Paula Ferreira, Filipa Vieira
Abstract:
The use of wind energy for electricity generation is growing rapidly across the world and in Portugal. However, the geographical characteristics of the country along with the average wind regime and with the environmental restrictions imposed to these projects create limitations to the exploit of the onshore wind resource. The best onshore wind spots are already committed and the possibility of offshore wind farms in the Portuguese cost is now being considered. This paper aims to make a contribution to the evaluation of offshore wind power projects in Portugal. The technical restrictions are addressed and the strategic, environmental and financial interest of the project is analysed from the private company and public points of view. The results suggest that additional support schemes are required to ensure private investors interest for these projects. Assuming an approach of direct substitution of energy sources for electricity generation, the avoided CO2 equivalent emissions for an offshore wind power project were quantified. Based on the conclusions, future research is proposed to address the environmental and social impacts of these projects.Keywords: Feed-in tariff, offshore wind power, project evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195610943 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System
Authors: Marina Kapsali, John S. Anagnostopoulos
Abstract:
Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.
Keywords: Electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102810942 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.
Keywords: Almost strictly positive real, doubly-fed induction generator, simple adaptive control, subsynchronous oscillations, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112610941 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.
Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68010940 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study
Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim
Abstract:
Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.
Keywords: Optimum energy systems, renewable energy sources, smart grid, micro-grid system, on- grid system, off-grid system, modeling and simulation, economical evaluation, net present value, cost of energy, environmental impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242310939 On the Transition of Europe’s Power Sector: Economic Consequences of National Targets
Authors: Geoffrey J. Blanford, Christoph Weissbart
Abstract:
The prospects for the European power sector indicate that it has to almost fully decarbonize in order to reach the economy-wide target of CO2-emission reduction. We apply the EU-REGEN model to explain the penetration of RES from an economic perspective, their spatial distribution, and the complementary role of conventional generation technologies. Furthermore, we identify economic consequences of national energy and climate targets. Our study shows that onshore wind power will be the most crucial generation technology for the future European power sector. Its geographic distribution is driven by resource quality. Gas power will be the major conventional generation technology for backing-up wind power. Moreover, a complete phase out of coal power proves to be not economically optimal. The paper demonstrates that existing national targets have a negative impact, especially on the German region with higher prices and lower revenues. The remaining regions profit are hardly affected. We encourage an EU-wide coordination on the expansion of wind power with harmonized policies. Yet, this requires profitable market structures for both, RES and conventional generation technologies.
Keywords: European decarbonization pathway, power market investment, public policies, technology choice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92310938 A Proper Design of Wind Turbine Grounding Systems under Lightning
Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said
Abstract:
Lightning protection systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns are frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must taken into account. In this paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.
Keywords: WTs, LPS, GPR, Grounding System, Mitigating techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524010937 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components
Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla
Abstract:
As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655