Search results for: Integer Neural Network(INN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1368

Search results for: Integer Neural Network(INN)

1308 Using Neural Network for Execution of Programmed Pulse Width Modulation (PPWM) Method

Authors: M. Tarafdar Haque, A. Taheri

Abstract:

Application of neural networks in execution of programmed pulse width modulation (PPWM) of a voltage source inverter (VSI) is studied in this paper. Using the proposed method it is possible to cancel out the desired harmonics in output of VSI in addition to control the magnitude of fundamental harmonic, contineously. By checking the non-trained values and a performance index, the most appropriate neural network is proposed. It is shown that neural networks may solve the custom difficulties of practical utilization of PPWM such as large size of memory, complex digital circuits and controlling the magnitude of output voltage in a discrete manner.

Keywords: Neural Network, Inverter, PPWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
1307 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1306 Prediction of Bath Temperature Using Neural Networks

Authors: H. Meradi, S. Bouhouche, M. Lahreche

Abstract:

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Keywords: LD converter, bath temperature, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
1305 A Secure Semi-Fragile Watermarking Scheme for Authentication and Recovery of Images Based On Wavelet Transform

Authors: Rafiullah Chamlawi, Asifullah Khan, Adnan Idris, Zahid Munir

Abstract:

Authentication of multimedia contents has gained much attention in recent times. In this paper, we propose a secure semi-fragile watermarking, with a choice of two watermarks to be embedded. This technique operates in integer wavelet domain and makes use of semi fragile watermarks for achieving better robustness. A self-recovering algorithm is employed, that hides the image digest into some Wavelet subbands to detect possible malevolent object manipulation undergone by the image (object replacing and/or deletion). The Semi-fragility makes the scheme tolerant for JPEG lossy compression as low as quality of 70%, and locate the tempered area accurately. In addition, the system ensures more security because the embedded watermarks are protected with private keys. The computational complexity is reduced using parameterized integer wavelet transform. Experimental results show that the proposed scheme guarantees the safety of watermark, image recovery and location of the tempered area accurately.

Keywords: Integer Wavelet Transform (IWT), Discrete Cosine Transform (DCT), JPEG Compression, Authentication and Self- Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
1304 Mathematical Models of Flow Shop and Job Shop Scheduling Problems

Authors: Miloš Šeda

Abstract:

In this paper, mathematical models for permutation flow shop scheduling and job shop scheduling problems are proposed. The first problem is based on a mixed integer programming model. As the problem is NP-complete, this model can only be used for smaller instances where an optimal solution can be computed. For large instances, another model is proposed which is suitable for solving the problem by stochastic heuristic methods. For the job shop scheduling problem, a mathematical model and its main representation schemes are presented.

Keywords: Flow shop, job shop, mixed integer model, representation scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4676
1303 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System

Authors: R. Ghasemi, M. R. Rahimi Khoygani

Abstract:

This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.

Keywords: Adaptive Neural Controller, Nonlinear Dynamical, Neural Network, RBF, Driven Pendulum, Position Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
1302 Some Remarkable Properties of a Hopfield Neural Network with Time Delay

Authors: Kelvin Rozier, Vladimir E. Bondarenko

Abstract:

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.

Keywords: Chaos, Hopfield neural network, noise, synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1301 Low-complexity Integer Frequency Offset Synchronization for OFDMA System

Authors: Young-Jae Kim, Young-Hwan You

Abstract:

This paper presents a integer frequency offset (IFO) estimation scheme for the 3GPP long term evolution (LTE) downlink system. Firstly, the conventional joint detection method for IFO and sector cell index (CID) information is introduced. Secondly, an IFO estimation without explicit sector CID information is proposed, which can operate jointly with the proposed IFO estimation and reduce the time delay in comparison with the conventional joint method. Also, the proposed method is computationally efficient and has almost similar performance in comparison with the conventional method over the Pedestrian and Vehicular channel models.

Keywords: LTE, OFDMA, primary synchronization signal (PSS), IFO, CID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
1300 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network

Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim

Abstract:

Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.

Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1299 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.

Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1298 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
1297 Novel Approach for Promoting the Generalization Ability of Neural Networks

Authors: Naiqin Feng, Fang Wang, Yuhui Qiu

Abstract:

A new approach to promote the generalization ability of neural networks is presented. It is based on the point of view of fuzzy theory. This approach is implemented through shrinking or magnifying the input vector, thereby reducing the difference between training set and testing set. It is called “shrinking-magnifying approach" (SMA). At the same time, a new algorithm; α-algorithm is presented to find out the appropriate shrinking-magnifying-factor (SMF) α and obtain better generalization ability of neural networks. Quite a few simulation experiments serve to study the effect of SMA and α-algorithm. The experiment results are discussed in detail, and the function principle of SMA is analyzed in theory. The results of experiments and analyses show that the new approach is not only simpler and easier, but also is very effective to many neural networks and many classification problems. In our experiments, the proportions promoting the generalization ability of neural networks have even reached 90%.

Keywords: Fuzzy theory, generalization, misclassification rate, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
1296 Wireless Neural Stimulator with Adjustable Electrical Quantity

Authors: Young-Seok Choi

Abstract:

The neural stimulation has been gaining much interest in neuromodulation research and clinical trials. For efficiency, there is a need for variable electrical stimulation such as current and voltage stimuli as well as wireless framework. In this regard, we develop the wireless neural stimulator capable of voltage and current stimuli. The system consists of ZigBee which is a wireless communication module and stimulus generator. The stimulus generator with 8-bits resolution enable both mono-polar and bi-polar waveform in voltage (-3.3~3.3V) and current(-330~330µA) stimulus mode which is controllable. The experimental results suggest that the proposed neural stimulator can play a role as an effective approach for neuromodulation.

Keywords: Neural stimulator, current stimulation, voltage stimulation, neuromodulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1295 Biologically Inspired Artificial Neural Cortex Architecture and its Formalism

Authors: Alexei M. Mikhailov

Abstract:

The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?

Keywords: Cortex, pattern recognition, artificial neural cortex, computational biology, brain and neural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
1294 Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

Authors: Khaing Win Mar, Thinn Thu Naing

Abstract:

Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.

Keywords: Precipitation prediction, monthly precipitation, neural network models, Myanmar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1293 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
1292 Identify Features and Parameters to Devise an Accurate Intrusion Detection System Using Artificial Neural Network

Authors: Saman M. Abdulla, Najla B. Al-Dabagh, Omar Zakaria

Abstract:

The aim of this article is to explain how features of attacks could be extracted from the packets. It also explains how vectors could be built and then applied to the input of any analysis stage. For analyzing, the work deploys the Feedforward-Back propagation neural network to act as misuse intrusion detection system. It uses ten types if attacks as example for training and testing the neural network. It explains how the packets are analyzed to extract features. The work shows how selecting the right features, building correct vectors and how correct identification of the training methods with nodes- number in hidden layer of any neural network affecting the accuracy of system. In addition, the work shows how to get values of optimal weights and use them to initialize the Artificial Neural Network.

Keywords: Artificial Neural Network, Attack Features, MisuseIntrusion Detection System, Training Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
1291 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: BDI, HMM, neural activation, optimal states, working conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
1290 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1289 The Elliptic Curves y2 = x3 - t2x over Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
1288 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
1287 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: Discontinuous cost function, mixed integer programming, optimization, procurement, rebate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
1286 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny

Abstract:

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1285 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
1284 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering

Authors: Babak H. Tabrizi, Seyed Farid Ghaderi

Abstract:

Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.

Keywords: Material ordering, project scheduling, quantity discount, space availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
1283 An Improved Integer Frequency Offset Estimator using the P1 Symbol for OFDM System

Authors: Yong-An Jung, Young-Hwan You

Abstract:

This paper suggests an improved integer frequency offset (IFO) estimation scheme using P1 symbol for orthogonal frequency division multiplexing (OFDM) based the second generation terrestrial digital video broadcasting (DVB-T2) system. Proposed IFO estimator is designed by a low-complexity blind IFO estimation scheme, which is implemented with complex additions. Also, we propose active carriers (ACs) selection scheme in order to prevent performance degradation in blind IFO estimation. The simulation results show that under the AWGN and TU6 channels, the proposed method has low complexity than conventional method and almost similar performance in comparison with the conventional method.

Keywords: OFDM, DVB-T2, P1 symbol, ACs, IFO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1282 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
1281 Supplier Selection by Considering Cost and Reliability

Authors: K. -H. Yang

Abstract:

Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.

Keywords: Mixed integer programming, quantitative approach, supplier’s reliability, supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
1280 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.

Keywords: Estimation, integer frequency offset, OFDM, timing offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1279 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826