Search results for: nonlinear analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9425

Search results for: nonlinear analysis

8585 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
8584 Constructivism Learning Management in Mathematical Analysis Courses

Authors: K. Paisal

Abstract:

The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.

Keywords: Constructivism, learning management, Mathematical Analysis courses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
8583 Revisiting the Concept of Risk Analysis within the Context of Geospatial Database Design: A Collaborative Framework

Authors: J. Grira, Y. Bédard, S. Roche

Abstract:

The aim of this research is to design a collaborative framework that integrates risk analysis activities into the geospatial database design (GDD) process. Risk analysis is rarely undertaken iteratively as part of the present GDD methods in conformance to requirement engineering (RE) guidelines and risk standards. Accordingly, when risk analysis is performed during the GDD, some foreseeable risks may be overlooked and not reach the output specifications especially when user intentions are not systematically collected. This may lead to ill-defined requirements and ultimately in higher risks of geospatial data misuse. The adopted approach consists of 1) reviewing risk analysis process within the scope of RE and GDD, 2) analyzing the challenges of risk analysis within the context of GDD, and 3) presenting the components of a risk-based collaborative framework that improves the collection of the intended/forbidden usages of the data and helps geo-IT experts to discover implicit requirements and risks.

Keywords: Collaborative risk analysis, intention of use, Geospatial database design, Geospatial data misuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
8582 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: Frequency response, Order of model reduction, frequency matching condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
8581 A Trends Analysis of Dinghy Yacht Simulator

Authors: Jae-Neung Lee, Sung-Bum Pan, Keun-Chang Kwak

Abstract:

This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. The results are summarized as follows. Attached to the cockpit are sensors that feed -back information on rudder angle, boat heel angle and mainsheet tension to the computer. Energy expenditure of the sailor measure indirectly using expired gas analysis for the measurement of VO2 and VCO2. At sea course configurations and wind conditions can be preset to suit any level of sailor from complete beginner to advanced sailor.

Keywords: Trends Analysis, Yacht Simulator, Sailing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
8580 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process

Authors: Dariush Jafari, Seyed Ali Jafari

Abstract:

The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.

Keywords: ANN, biosorption, cadmium, packed-bed, potable water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
8579 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
8578 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
8577 EMD-Based Signal Noise Reduction

Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi

Abstract:

This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.

Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4021
8576 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks

Authors: M. Behbahani-Nejad, A. Bagheri

Abstract:

An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.

Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6505
8575 Comprehensive Nonlinearity Simulation of Different Types and Modes of HEMTs with Respect to Biasing Conditions

Authors: M. M. Karkhanehchi, A. Ammani

Abstract:

A simple analytical model has been developed to optimize biasing conditions for obtaining maximum linearity among lattice-matched, pseudomorphic and metamorphic HEMT types as well as enhancement and depletion HEMT modes. A nonlinear current-voltage model has been simulated based on extracted data to study and select the most appropriate type and mode of HEMT in terms of a given gate-source biasing voltage within the device so as to employ the circuit for the highest possible output current or voltage linear swing. Simulation results can be used as a basis for the selection of optimum gate-source biasing voltage for a given type and mode of HEMT with regard to a circuit design. The consequences can also be a criterion for choosing the optimum type or mode of HEMT for a predetermined biasing condition.

Keywords: Biasing, characteristic, linearity, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
8574 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
8573 Equalization Algorithms for MIMO System

Authors: Said Elkassimi, Said Safi, B. Manaut

Abstract:

In recent years, multi-antenna techniques are being considered as a potential solution to increase the flow of future wireless communication systems. The objective of this article is to study the emission and reception system MIMO (Multiple Input Multiple Output), and present the different reception decoding techniques. First we will present the least complex technical, linear receivers such as the zero forcing equalizer (ZF) and minimum mean squared error (MMSE). Then a nonlinear technique called ordered successive cancellation of interferences (OSIC) and the optimal detector based on the maximum likelihood criterion (ML), finally, we simulate the associated decoding algorithms for MIMO system such as ZF, MMSE, OSIC and ML, thus a comparison of performance of these algorithms in MIMO context.

Keywords: Multiple Input Multiple Outputs (MIMO), ZF, MMSE, Ordered Interference Successive Cancellation (OSIC), ML, Interference Successive Cancellation (SIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835
8572 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control

Authors: T. C. Kuo, Y. J. Huang, B. W. Hong

Abstract:

This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.

Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
8571 Application of GAMS and GA in the Location and Penetration of Distributed Generation

Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati

Abstract:

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).

Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
8570 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.

Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
8569 The Performance Analysis of Error Saturation Nonlinearity LMS in Impulsive Noise based on Weighted-Energy Conservation

Authors: T Panigrahi, G Panda, Mulgrew

Abstract:

This paper introduces a new approach for the performance analysis of adaptive filter with error saturation nonlinearity in the presence of impulsive noise. The performance analysis of adaptive filters includes both transient analysis which shows that how fast a filter learns and the steady-state analysis gives how well a filter learns. The recursive expressions for mean-square deviation(MSD) and excess mean-square error(EMSE) are derived based on weighted energy conservation arguments which provide the transient behavior of the adaptive algorithm. The steady-state analysis for co-related input regressor data is analyzed, so this approach leads to a new performance results without restricting the input regression data to be white.

Keywords: Error saturation nonlinearity, transient analysis, impulsive noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
8568 2D Graphical Analysis of Wastewater Influent Capacity Time Series

Authors: Monika Chuchro, Maciej Dwornik

Abstract:

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.

Keywords: graphical analysis, time series, seasonality, noisy environmental data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
8567 Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building

Authors: Bahador Bagheri, Ehsan Salimi Firoozabad, Mohammadreza Yahyaei

Abstract:

As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.

Keywords: Equivalent Static Analysis, Time history method, Response spectrum method, Reinforce concrete building, displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16159
8566 Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.

Keywords: Flight control, trirotor aircraft, situational awareness, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
8565 Economic Factorial Analysis of CO2 Emissions: The Divisia Index with Interconnected Factors Approach

Authors: Alexander Y. Vaninsky

Abstract:

This paper presents a method of economic factorial analysis of the CO2 emissions based on the extension of the Divisia index to interconnected factors. This approach, contrary to the Kaya identity, considers three main factors of the CO2 emissions: gross domestic product, energy consumption, and population - as equally important, and allows for accounting of all of them simultaneously. The three factors are included into analysis together with their carbon intensities that allows for obtaining a comprehensive picture of the change in the CO2 emissions. A computer program in R-language that is available for free download serves automation of the calculations. A case study of the U.S. carbon dioxide emissions is used as an example. 

Keywords: CO2 emissions, Economic analysis, Factorial analysis, Divisia index, Interconnected factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
8564 Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term

Authors: Aomar Anane, Omar Chakrone, Loubna Moutaouekkil

Abstract:

As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.

Keywords: periodic solution, neutral Rayleigh equation, variable sign, Deviating argument, p-Laplacian, Mawhin’s continuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
8563 EML-Estimation of Multivariate t Copulas with Heuristic Optimization

Authors: Jin Zhang, Wing Lon Ng

Abstract:

In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.

Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
8562 Validation of Reverse Engineered Web Application Models

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become complex and crucial for many firms, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering). The scientific community has focused attention to Web application design, development, analysis, testing, by studying and proposing methodologies and tools. Static and dynamic techniques may be used to analyze existing Web applications. The use of traditional static source code analysis may be very difficult, for the presence of dynamically generated code, and for the multi-language nature of the Web. Dynamic analysis may be useful, but it has an intrinsic limitation, the low number of program executions used to extract information. Our reverse engineering analysis, used into our WAAT (Web Applications Analysis and Testing) project, applies mutational techniques in order to exploit server side execution engines to accomplish part of the dynamic analysis. This paper studies the effects of mutation source code analysis applied to Web software to build application models. Mutation-based generated models may contain more information then necessary, so we need a pruning mechanism.

Keywords: Validation, Dynamic Analysis, MutationAnalysis, Reverse Engineering, Web Applications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
8561 A Discrete Choice Modeling Approach to Modular Systems Design

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.

Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
8560 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
8559 Correlational Analysis between Brain Dominances and Multiple Intelligences

Authors: Lakshmi Dhandabani, Rajeev Sukumaran

Abstract:

Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.

Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
8558 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
8557 Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.

Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
8556 Improved Ant Colony Optimization for Solving Reliability Redundancy Allocation Problems

Authors: Phakhapong Thanitakul, Worawat Sa-ngiamvibool, Apinan Aurasopon, Saravuth Pothiya

Abstract:

This paper presents an improved ant colony optimization (IACO) for solving the reliability redundancy allocation problem (RAP) in order to maximize system reliability. To improve the performance of ACO algorithm, two additional techniques, i.e. neighborhood search, and re-initialization process are presented. To show its efficiency and effectiveness, the proposed IACO is applied to solve three RAPs. Additionally, the results of the proposed IACO are compared with those of the conventional heuristic approaches i.e. genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The experimental results show that the proposed IACO approach is comparatively capable of obtaining higher quality solution and faster computational time.

Keywords: Ant colony optimization, Heuristic algorithm, Mixed-integer nonlinear programming, Redundancy allocation problem, Reliability optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098