Search results for: emotion classification
354 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi
Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault
Abstract:
Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178353 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu
Abstract:
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305352 UB-Tree Indexing for Semantic Query Optimization of Range Queries
Authors: S. Housseno, A. Simonet, M. Simonet
Abstract:
Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500351 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.
Keywords: Accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948350 A Rough Sets Approach for Relevant Internet/Web Online Searching
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550349 Ultrasonic Echo Image Adaptive Watermarking Using the Just-Noticeable Difference Estimation
Authors: Amnach Khawne, Kazuhiko Hamamoto, Orachat Chitsobhuk
Abstract:
Most of the image watermarking methods, using the properties of the human visual system (HVS), have been proposed in literature. The component of the visual threshold is usually related to either the spatial contrast sensitivity function (CSF) or the visual masking. Especially on the contrast masking, most methods have not mention to the effect near to the edge region. Since the HVS is sensitive what happens on the edge area. This paper proposes ultrasound image watermarking using the visual threshold corresponding to the HVS in which the coefficients in a DCT-block have been classified based on the texture, edge, and plain area. This classification method enables not only useful for imperceptibility when the watermark is insert into an image but also achievable a robustness of watermark detection. A comparison of the proposed method with other methods has been carried out which shown that the proposed method robusts to blockwise memoryless manipulations, and also robust against noise addition.
Keywords: Medical image watermarking, Human Visual System, Image Adaptive Watermark
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602348 Goal Based Episodic Processing in Implicit Learning
Authors: Peter A. Bibby
Abstract:
Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438347 The Study on the Stationarity of Energy Consumption in US States: Considering Structural Breaks, Nonlinearity, and Cross- Sectional Dependency
Authors: Wen-Chi Liu
Abstract:
This study applies the sequential panel selection method (SPSM) procedure proposed by Chortareas and Kapetanios (2009) to investigate the time-series properties of energy consumption in 50 US states from 1963 to 2009. SPSM involves the classification of the entire panel into a group of stationary series and a group of non-stationary series to identify how many and which series in the panel are stationary processes. Empirical results obtained through SPSM with the panel KSS unit root test developed by Ucar and Omay (2009) combined with a Fourier function indicate that energy consumption in all the 50 US states are stationary. The results of this study have important policy implications for the 50 US states.
Keywords: Energy Consumption, Panel Unit Root, Sequential Panel Selection Method, Fourier Function, US states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814346 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649345 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461344 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902343 Power System Security Assessment using Binary SVM Based Pattern Recognition
Authors: S Kalyani, K Shanti Swarup
Abstract:
Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875342 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399341 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261340 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set
Authors: Andreas Theissler, Ian Dear
Abstract:
The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.
Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935339 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets
Authors: R. K. Agrawal, Rajni Bala
Abstract:
Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.
Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059338 Modeling of Cross Flow Classifier with Water Injection
Authors: E. Pikushchak, J. Dueck, L. Minkov
Abstract:
In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.Keywords: Classification, fine particle processing, hydrocyclone, water injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954337 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279336 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470335 Video Quality Assessment Methods: A Bird’s-Eye View
Authors: P. M. Arun Kumar, S. Chandramathi
Abstract:
The proliferation of multimedia technology and services in today’s world provide ample research scope in the frontiers of visual signal processing. Wide spread usage of video based applications in heterogeneous environment needs viable methods of Video Quality Assessment (VQA). The evaluation of video quality not only depends on high QoS requirements but also emphasis the need of novel term ‘QoE’ (Quality of Experience) that perceive video quality as user centric. This paper discusses two vital video quality assessment methods namely, subjective and objective assessment methods. The evolution of various video quality metrics, their classification models and applications are reviewed in this work. The Mean Opinion Score (MOS) based subjective measurements and algorithm based objective metrics are discussed and their challenges are outlined. Further, this paper explores the recent progress of VQA in emerging technologies such as mobile video and 3D video.
Keywords: 3D-Video, no reference metric, quality of experience, video quality assessment, video quality metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4054334 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method
Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho
Abstract:
The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551333 Middle East towards Incubator Benefits: Case Studies
Authors: Hanadi Mubarak AL-Mubaraki, Michael Busler
Abstract:
In the context of business incubation (BI) as strategic enablers, this paper critically reviews the literature relating to the strategic benefits of BI in the Middle East. The taxonomy of BI benefits in the strategic elements on 1) type, 2) financial model, 3) services, 4) objectives, 5) number of clients, 6) number of graduates, and 7) jobs creation. Understanding the importance of BI benefits can be significant in the economic development although most incubators lead to diversify the economy. Thus, taxonomies of the benefits of BI are produced from both the academic literature and published case studies. In this way, a classification of strategic benefits elements as they relate to incubators has been developed to provide a greater understanding of the benefits needed to obtain a specific element. The result of this paper is Business incubators is aimed entrepreneurship, jobs creation, research commercialization and profitable enterprises in Middle Eastern countries.Keywords: Economic Development, Incubators, Middle East, Strategic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222332 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777331 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data
Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala
Abstract:
Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.
Keywords: Databases, data mining, multi-agent, spatial datamart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045330 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877329 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)
Authors: Dinh Ha, Tran, Chung - Ruey Yen
Abstract:
This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.
Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546328 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)
Authors: Dinh - Ha Tran, Chung - Ruey Yen
Abstract:
This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3g) in Chaozhou 5, Orejona and F11, respectively. TSS contents were not much influcenced by pollination methods.
Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936327 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occured in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.
Keywords: Water Seepage, Amirkabir Tunnel, Analytical Method, DEM, SGR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3961326 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.
Keywords: Cooler, EER, Energy Label, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568325 Learning User Keystroke Patterns for Authentication
Authors: Ying Zhao
Abstract:
Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822