Search results for: Mixed Green water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3398

Search results for: Mixed Green water

2558 Comparison of the Effect of Two Rootstocks, Citrus macrophylla and Citrus volkameriana, on Water Productivity of Citrus “Orogrande” under Three Irrigation Doses

Authors: H. El Omari, A. Fall, T. Krochni

Abstract:

This present work mainly concerns the improvement of citrus water productivity in the Souss Massa region. The objective is to evaluate the effect of deficit irrigation applied during the fruit growth stage on fruit size, quality and yield of the Orogrande variety grafted on Citrus macrophylla and Citrus volkameriana. Three irrigation regimes were adopted, a control D0 of 3.6 l/h and two doses D1 (58% D0 = 2.1 l/h) and D2 (236% D0 = 8.5 l/h). The experimental design was a randomized complete block while keeping the same spacing between drippers, the same duration of irrigation and the beginning of trials (fruit growth stage). Results showed that at the end of the cycle from October 1, 2020, to September 30, 2021, a total water supply of 732 mm and 785 mm using the D1 dose was provided to trees of Orogrande variety, respectively grafted on Citrus macrophylla and Citrus volkameriana rootstocks. Citrus macrophylla presented largest fruit size of 38 mm compared to Citrus volkameriana (33 mm) with a significant difference (p = 0.007). Total soluble sugar (8°Brix) and juice content level (40%) were higher with the application of the D1 dose on both rootstocks. Yield of 36 Tons was not affected by the deficit irrigation. Reduction of water supply by 18% increases agronomic productivity (6 MAD/m³) and economic productivity (3 MAD/m³).

Keywords: Water productivity, Citrus, irrigation, fruit size, fruit quality, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46
2557 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand

Authors: S. Chuenchooklin

Abstract:

This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.

Keywords: HEC-RAS, HMS, pumping stations, cascade weirs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2556 Static Analysis and Pseudostatic Slope Stability

Authors: Meftah Ali

Abstract:

This article aims to analyze the static stability and pseudostatic slope by using different methods such as: Bishop method, Junbu, Ordinary, Morgenstern-price and GLE. The two dimensional modeling of slope stability under various loading as: the earthquake effect, the water level and road mobile charges. The results show that the slope is stable in the static case without water, but in other cases, the slope lost its stability and give unstable. The calculation of safety factor is to evaluate the stability of the slope using the limit equilibrium method despite the difference between the results obtained by these methods that do not rely on the same assumptions. In the end, the results of this study illuminate well the influence of the action of water, moving loads and the earthquake on the stability of the slope.

Keywords: Slope stability, pseudo static, safety factor, limit equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
2555 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
2554 Issues Problems of Sedimentation in Reservoir Siazakh Dam Case Study

Authors: Reza Gharehkhani

Abstract:

Sedimentation in reservoirs lowers the quality of consumed water, reduce the volume of reservoir, lowers the controllable amount of flood, increases the risk of water overflow during possible floods and the risk of reversal and reduction of dam's useful life. So in all stages of dam establishment such as cognitive studies, phase-1 studies of design, control, construction and maintenance, the problem of sedimentation in reservoir should be considered. What engineers need to do is examine and develop the methods to keep effective capacity of a reservoir, however engineers should also consider the influences of the methods on the flood disaster, functions of water use facilities and environmental issues.This article first examines the sedimentation in reservoirs and shows how to control it and then discusses the studies about the sedimens in Siazakh Dam.

Keywords: Sedimentation, Reservoir, Sediment Control, Dam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
2553 Clogging Reduction Design Factor for Geosynthetics Used in Sustainable Urban Drainage Systems and Roads

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Javier González-Fernández, Daniel Castro-Fresno

Abstract:

Sustainable urban drainage systems (SUDS) are more often used in order to prevent floods, water treatment, fight against pollution, urban heat island effect, and global warming in applications like green roofs, permeable pavements, and others. Furthermore, geosynthetics are also worldwide used as a part of drainage systems in road construction. Geotextiles are an essential part of both, and one of the main geotextile properties in those applications is permeability, whose behavior is not well established along its service life. In this paper, clogging reduction design factors for an estimated service life of 25 years are experimentally obtained for five different geotextiles used in SUDS and roads combined with two different soils and with two pollutants, motor oil, and lime, in order to evaluate chemical clogging, too. The effect of characteristic opening size and other characteristics of the geosynthetics are also discussed in order to give civil engineers, together with the clogging reduction factors, a better long-time design of geotextiles used in their SUDS and roads.

Keywords: Geotextiles, drainage, clogging, reduction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47
2552 Distribution and Characterization of Thermal Springs in Northern Oman

Authors: Fahad Al Shidi, Reginald Victor

Abstract:

This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.

Keywords: Alkaline springs, geothermal, Hajar Super Group, Northern Oman, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
2551 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
2550 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B.-A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, hollow profiles, press hardening, tubes, water-air spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
2549 Teaching Computer Programming to Diverse Students: A Comparative, Mixed-Methods, Classroom Research Study

Authors: Almudena Konrad, Tomás Galguera

Abstract:

Lack of motivation and interest is a serious obstacle to students’ learning computing skills. A need exists for a knowledge base on effective pedagogy and curricula to teach computer programming. This paper presents results from research evaluating a six-year project designed to teach complex concepts in computer programming collaboratively, while supporting students to continue developing their computer thinking and related coding skills individually. Utilizing a quasi-experimental, mixed methods design, the pedagogical approaches and methods were assessed in two contrasting groups of students with different socioeconomic status, gender, and age composition. Analyses of quantitative data from Likert-scale surveys and an evaluation rubric, combined with qualitative data from reflective writing exercises and semi-structured interviews yielded convincing evidence of the project’s success at both teaching and inspiring students.

Keywords: Computational thinking, computing education, computer programming curriculum, logic, teaching methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
2548 Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

Authors: Murad A, Baker H, Mahmoud S, Gabr A

Abstract:

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Keywords: groundwater, shallow seismic method, United Arab Emirates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
2547 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator

Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad

Abstract:

The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2546 Finite Difference Method of the Seismic Analysis of Earth Dam

Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali

Abstract:

Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.

Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
2545 Solving Bus Terminal Location Problem Using Genetic Algorithm

Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil

Abstract:

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
2544 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.

Keywords: Aluminum, Acidification, Sludge, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2543 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2542 Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number

Authors: Amèni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot

Abstract:

This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.

Keywords: Forced convection, Mixed convection, Prandtl number, Wall jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
2541 Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Sarr F, Hirich A.

Abstract:

An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.

Keywords: Amaranth, salinity, semi-arid, treated waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
2540 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation–Effect of Entrainer

Authors: Aleksandra Yu. Sazonova, Valentina M. Raeva

Abstract:

The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.

Keywords: Acetonitrile, entrainer, extractive distillation, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7202
2539 A Concept of Rational Water Management at Local Utilities – The Use of RO for Water Supply and Wastewater Treatment/Reuse

Authors: N. Matveev, A. Pervov

Abstract:

Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.

Keywords: Reverse osmosis, stormwater treatment, openchannel module, wastewater reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
2538 Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Authors: Z. Gholamzadeh, A. Zali, S. A. H. Feghhi, C. Tenreiro, Y. Kadi, M. Rezazadeh, M. Aref

Abstract:

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

Keywords: MCNP-4C, Reactor core, Multiplication factor, Reactivity, Peaking factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2537 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. 

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2536 Frequency and Amplitude Measurement of a Vibrating Object in Water Using Ultrasonic Speckle Technique

Authors: Hongmao Zhu, Jun Chu, Lei Shen, Zhihua Luo

Abstract:

The principle of frequency and amplitude measurement of a vibrating object in water using ultrasonic speckle technique is presented in this paper. Compared with other traditional techniques, the ultrasonic speckle technique can be applied to vibration measurement of a nonmetal object with rough surface in water in a noncontact way. The relationship between speckle movement and object movement was analyzed. Based on this study, an ultrasonic speckle measurement system was set up. With this system the frequency and amplitude of an underwater vibrating cantilever beam was detected. The result shows that the experimental data is in good agreement with the calibrating data.

Keywords: Frequency, Amplitude, Vibration measurement, Ultrasonic speckle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2535 The Truth about Good and Evil: A Mixed-Methods Approach to Color Theory

Authors: Raniya Alsharif

Abstract:

The color theory of good and evil is the association of colors to the omnipresent concept of good and evil, where human behavior and perception can be highly influenced by seeing black and white, making these connotations almost dangerously distinctive where they can be very hard to distinguish. This theory is a human construct that dates back to ancient Egypt and has been used since then in almost all forms of communication and expression, such as art, fashion, literature, and religious manuscripts, helping the implantation of preconceived ideas that influence behavior and society. This is a mixed-methods research that uses both surveys to collect quantitative data related to the theory and a vignette to collect qualitative data by using a scenario where participants aged between 18-25 will style two characters of good and bad characteristics with color contrasting clothes, both yielding results about the nature of the preconceived perceptions associated with ‘black and white’ and ‘good and evil’, illustrating the important role of media and communications in human behavior and subconscious, and also uncover how far this theory goes in the age of social media enlightenment.

Keywords: Color perception, interpretivism, thematic analysis, vignettes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
2534 An Assessment of Water Pollution of the Beshar River Aquatic Ecosystems

Authors: Amir Eghbal Khajeh Rahimi, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of pollutants activities on the water quality of the Beshar river and its aquatic ecosystems. This river is approximately 190 km in length and situated at the geographical positions of 51° 20´ to 51° 48´ E and 30° 18´ to 30° 52´ N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. Therefore, to determine the impact of human activities on the Beshar River, the most important water quality parameters such as pH, dissolve oxygen (DO), Biological Oxygen Demand (BOD5), Total Dissolve Solids (TDS), Nitrates (NO3-N) and Phosphates (PO4) were estimated at the five stations. As the results show, the most important pollution index parameters such as BOD5, NO3 and PO4 increase and DO and pH decrease according to human activities (P<0.05). However, due to pollutant degradation and dilution, pollution index parameters improve downstream sampling stations.

Keywords: Human activities, Water pollution, Beshar River, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2533 Necessity of Risk Management of Various Industry-Associated Pollutants(Case Study of Gavkhoni Wetland Ecosystem)

Authors: Hekmatpanah, M.

Abstract:

Since the beginning of human history, human activities have caused many changes in the environment. Today, a particular attention should be paid to gaining knowledge about water quality of wetlands which are pristine natural environments rich in genetic reserves. If qualitative conditions of industrial areas (in terms of both physicochemical and biological conditions) are not addressed properly, they could cause disruption in natural ecosystems, especially in rivers. With regards to the quality of water resources, determination of pollutant sources plays a pivotal role in engineering projects as well as designing water quality control systems. Thus, using different methods such as flow duration curves, dischargepollution load model and frequency analysis by HYFA software package, risk of various industrial pollutants in international and ecologically important Gavkhoni wetland is analyzed. In this study, a station located at Varzaneh City is used as the last station on Zayanderud River, from where the river water is discharged into the wetland. Results showed that elements- concentrations often exceeded the allowed level and river water can endanger regional ecosystem. In addition, if the river discharge is managed on Q25 basis, this basis can lower concentrations of elements, keeping them within the normal level.

Keywords: Pollutants Risk, Industry, Flow Discharge, Management, Gavkhoni Wetland

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
2532 Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test

Authors: J. Grasaesom, S.Thong-om, W. Payakcho, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.

Keywords: ageing of silicone rubber, salt water dip wheeltest, silicone rubber polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
2531 Oxygen Transfer by Multiple Inclined Plunging Water Jets

Authors: Surinder Deswal

Abstract:

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2530 Flow Duration Curves and Recession Curves Connection through a Mathematical Link

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.

Keywords: Chronological sequence of discharges, recession curves, streamflow duration curves, water concession.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
2529 Economic Effects of Maritime Environmental Legislation in the North and Baltic Sea Area: An Exploratory Sequential Mixed Methods Approach

Authors: Thea Freese

Abstract:

Environmental legislation to protect North and Baltic Sea areas from harmful vessel-source emissions has received increased political attention in recent years. Legislative measures are expected to show positive effects on the health of the marine environment and society. At the same time, compliance might increase the costs to industry and have effects on freight rates and volumes shipped with potential negative repercussions on the environment. Building on an exploratory sequential mixed methods approach, this research project will study the economic effects of maritime environmental legislation in two phases. In Phase I, exploratory in-depth interviews were conducted with 12 experts from various stakeholder groups aiming at identifying variables influencing the relationship between environmental legislation, freight rates and volumes shipped. Influencing factors like compliance, enforcement and modal shift were identified and studied. Phase II will comprise of a quantitative study conducted with the aim of verifying the theory build in Phase I and quantifying economic effects of rules on shipping pollution. Research in this field might inform policy-makers about determinants of behaviour of ship operators in the face of the law and might further the development of a comprehensive legal system for marine environmental protection. At the present stage of research, first tentative results from the qualitative phase may be examined and open research questions to be addressed in the quantitative phase as well as possible research designs for phase II may be discussed. Input from other researchers will be highly valuable at this point.

Keywords: Clean shipping operations, compliance, maritime environmental legislation, maritime law and economics, mixed methods research, North and Baltic Sea area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089