Search results for: learning using labeled and unlabelled data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8800

Search results for: learning using labeled and unlabelled data

7990 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program

Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany

Abstract:

We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.

Keywords: Action learning, behaviour, leadership development, Theory-U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
7989 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: Virtual reality, student assessment, medical education, 3D, embryology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
7988 Problems of Lifelong Education Course in Information and Communication Technology

Authors: Hisham Md Suhadi, Faaizah Shahbodin, Jamaluddin Hashim

Abstract:

The study is the way to identify the problems that occur in organizing short course’s lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed, there are the problems occur in organizing the short course for lifelong learning in ICT education.

Keywords: Lifelong education, information and communication technology (ICT), short course, ICT education, courses administrative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
7987 First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Authors: Frank Emmert-Streib, Matthias Dehmer

Abstract:

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.

Keywords: Dynamic Bayesian networks, microarray data, structure learning, Markov chain Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
7986 Students’ Level of Participation, Critical Thinking, Types of Action and Influencing Factors in Online Forum Environment

Authors: N. I. Bazid, I. N. Umar

Abstract:

Due to the advancement of Internet technology, online learning is widely used in higher education institutions. Online learning offers several means of communication, including online forum. Through online forum, students and instructors are able to discuss and share their knowledge and expertise without having a need to attend the face-to-face, ordinary classroom session. The purposes of this study are to analyze the students’ levels of participation and critical thinking, types of action and factors influencing their participation in online forum. A total of 41 postgraduate students undertaking a course in educational technology from a public university in Malaysia were involved in this study. In this course, the students participated in a weekly online forum as part of the course requirement. Based on the log data file extracted from the online forum, the students’ type of actions (view, add, update, delete posts) and their levels of participation (passive, moderate or active) were identified. In addition, the messages posted in the forum were analyzed to gauge their level of critical thinking. Meanwhile, the factors that might influence their online forum participation were measured using a 24-items questionnaire. Based on the log data, a total of 105 posts were sent by the participants. In addition, the findings show that (i) majority of the students are moderate participants, with an average of two to three posts per person, (ii) viewing posts are the most frequent type of action (85.1%), and followed by adding post (9.7%). Furthermore, based on the posts they made, the most frequent type of critical thinking observed was justification (50 input or 19.0%), followed by linking ideas and interpretation (47 input or 18%), and novelty (38 input or 14.4%). The findings indicate that online forum allows for social interaction and can be used to measure the students’ critical thinking skills. In order to achieve this, monitoring students’ activities in the online forum is recommended.

Keywords: Critical thinking, learning management system, level of online participation, online forum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
7985 Muscle: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.

Keywords: Blind, Tactile Texture, Muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
7984 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity

Authors: Mridul Sharma, Praveen Saroha

Abstract:

In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).

Keywords: Basolateral amygdala, brain derived neurotrophic factor, brain plasticity, diet, exercise, mediterranean diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
7983 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
7982 Comparative Analysis of Diverse Collection of Big Data Analytics Tools

Authors: S. Vidhya, S. Sarumathi, N. Shanthi

Abstract:

Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for producing various tools in big data. Moreover, the main aim of big data analytics is to utilize the advanced analytic techniques besides very huge, different datasets which contain diverse sizes from terabytes to zettabytes and diverse types such as structured or unstructured and batch or streaming. Big data is useful for data sets where their size or type is away from the capability of traditional relational databases for capturing, managing and processing the data with low-latency. Thus the out coming challenges tend to the occurrence of powerful big data tools. In this survey, a various collection of big data tools are illustrated and also compared with the salient features.

Keywords: Big data, Big data analytics, Business analytics, Data analysis, Data visualization, Data discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783
7981 The Role of Blended Modality in Enhancing Active Learning Strategies in Higher Education: A Case Study of a Hybrid Course of Oral Production and Listening of French

Authors: Tharwat N. Hijjawi

Abstract:

Learning oral skills in an Arabic speaking environment is challenging. A blended course (material, activities, and individual/ group work tasks …) was implemented in a module of level B1 for undergraduate students of French as a foreign language in order to increase their opportunities to practice listening and speaking skills. This research investigates the influence of this modality on enhancing active learning and examines the effectiveness of provided strategies. Moreover, it aims at discovering how it allows teacher to flip the traditional classroom and create a learner-centered framework. Which approaches were integrated to motivate students and urge them to search, analyze, criticize, create and accomplish projects? What was the perception of students? This paper is based on the qualitative findings of a questionnaire and a focus group interview with learners. Despite the doubled time and effort both “teacher” and “student” needed, results revealed that the NTIC allowed a shift into a learning paradigm where learners were the “chiefs” of the process. Tasks and collaborative projects required higher intellectual capacities from them. Learners appreciated this experience and developed new life-long learning competencies at many levels: social, affective, ethical and cognitive. To conclude, they defined themselves as motivated young researchers, motivators and critical thinkers.

Keywords: Active learning, critical thinking, inverted classroom, learning paradigm, problem-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
7980 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
7979 Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling

Authors: Laidson P. Gomes, Cristina T. Andrade, Eduardo M. Del Aguila, Cameron Alexander, Vânia M. F. Paschoalin

Abstract:

Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of E. coli. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between E. coli suspensions mixed with FITC-labeled chitosan polymers and nanoparticles.

Keywords: Chitosan nanoparticles, dynamic light scattering, zeta potential, confocal microscopy, antibacterial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
7978 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
7977 Between Policy Options and Technology Applications: Measuring the Sustainable Impacts on Distance Learning

Authors: Subramaniam Chandran

Abstract:

This paper examines the interplay of policy options and cost-effective technology in providing sustainable distance education. A case study has been conducted among the learners and teachers. The emergence of learning technologies through CD, internet, and mobile is increasingly adopted by distance institutes for quick delivery and cost-effective factors. Their sustainability is conditioned by the structure of learners and well as the teaching community. The structure of learners in terms of rural and urban background revealed similarity in adoption and utilization of mobile learning. In other words, the technology transcended the rural-urban dichotomy. The teaching community was divided into two groups on policy issues. This study revealed both cost-effective as well as sustainability impacts on different learners groups divided by rural and urban location.

Keywords: Distance Education, Mobile Learning, Policy, Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
7976 Project Management at University: Towards an Evaluation Process around Cooperative Learning

Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R

Abstract:

The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.

Keywords: Cooperative-collaborative learning, educational management, formative-summative assessment, leadership training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
7975 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566
7974 The Engineering Eportfolio: Enhancing Communication, Critical Thinking and Problem Solving and Teamwork Skills?

Authors: Linda Mei Sui Khoo, Dorit Maor, Renato Schibeci

Abstract:

Graduate attributes have received increasing attention over recent years as universities incorporate these attributes into the curriculum. Graduates who have adequate technical knowledge only are not sufficiently equipped to compete effectively in the work place; they also need non disciplinary skills ie, graduate attributes. The purpose of this paper is to investigate the impact of an eportfolio in a technical communication course to enhance engineering students- graduate attributes: namely, learning of communication, critical thinking and problem solving and teamwork skills. Two questionnaires were used to elicit information from the students: one on their preferred and the other on the actual learning process. In addition, student perceptions of the use of eportfolio as a learning tool were investigated. Preliminary findings showed that most of the students- expectations have been met with their actual learning. This indicated that eportfolio has the potential as a tool to enhance students- graduate attributes.

Keywords: Eportfolio, Communication Skills, Critical Thinking and Problem Solving Skills and Teamwork Skills

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
7973 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
7972 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning

Authors: Denise Levy, Helen J. Khoury

Abstract:

Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.

Keywords: Nuclear technology, multimedia learning tools, science museum, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
7971 Malaysia Folk Literature in Early Childhood Education

Authors: F. P. Chew, Z. Ishak

Abstract:

Malay Folk Literature in early childhood education served as an important agent in child development that involved emotional, thinking and language aspects. Up to this moment not much research has been carried out in Malaysia particularly in the teaching and learning aspects nor has there been an effort to publish “big books." Hence this article will discuss the stance taken by university undergraduate students, teachers and parents in evaluating Malay Folk Literature in early childhood education to be used as big books. The data collated and analyzed were taken from 646 respondents comprising 347 undergraduates and 299 teachers. Results of the study indicated that Malay Folk Literature can be absorbed into teaching and learning for early childhood with a mean of 4.25 while it can be in big books with a mean of 4.14. Meanwhile the highest mean value required for placing Malay Folk Literature genre as big books in early childhood education rests on exemplary stories for undergraduates with mean of 4.47; animal fables for teachers with a mean of 4.38. The lowest mean value of 3.57 is given to lipurlara stories. The most popular Malay Folk Literature found suitable for early children is Sang Kancil and the Crocodile, followed by Bawang Putih Bawang Merah. Pak Padir, Legends of Mahsuri, Origin of Malacca, and Origin of Rainbow are among the popular stories as well. Overall the undergraduates show a positive attitude toward all the items compared to teachers. The t-test analysis has revealed a non significant relationship between the undergraduate students and teachers with all the items for the teaching and learning of Malay Folk Literature.

Keywords: Big Book, Early Childhood Education, Malay FolkLiterature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4315
7970 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521
7969 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Authors: Petar Halachev

Abstract:

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

Keywords: artificial neural network, balanced scorecard, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
7968 Crude Oil Price Prediction Using LSTM Networks

Authors: Varun Gupta, Ankit Pandey

Abstract:

Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.

Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3729
7967 Active Learning in Computer Exercises on Electronics

Authors: Zoja Raud, Valery Vodovozov

Abstract:

Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.

Keywords: Modelling, simulation, engineering education, electronics, active learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
7966 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532
7965 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, education, religious text, religious education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
7964 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
7963 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task

Authors: Dejanira Araiza-Illan, Tony J. Dodd

Abstract:

A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.

Keywords: Autonomous navigation, mobile robots, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
7962 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: Attributed community, attribute detection, community, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
7961 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata

Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi

Abstract:

Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.

Keywords: Resource discovery, learning automata, neural network, economic policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463