Search results for: Organizational learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2377

Search results for: Organizational learning

1567 Optimizing Mobile Agents Migration Based on Decision Tree Learning

Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed

Abstract:

Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.

Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1566 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study

Authors: Mahmoud I. Syam, Osama K. El-Hafy

Abstract:

With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.

Keywords: Learning, motivating, student, teacher, testing hypotheses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
1565 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
1564 Validating Condition-Based Maintenance Algorithms Through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
1563 Identifying Teachers’ Perception of Integrity in School-Based Assessment Practice: A Case Study

Authors: Abd Aziz Bin Abd Shukor, Eftah Binti Moh Hj Abdullah

Abstract:

This case study aims to identify teachers’ perception as regards integrity in School-Ba sed Assessment (PBS) practice. This descriptive study involved 9 teachers from 4 secondary schools in 3 districts in the state of Perak. The respondents had undergone an integrity in PBS Practice interview using a focused group discussion method. The overall findings showed that the teachers believed that integrity in PBS practice could be achieved by adjusting the teaching methods align with learning objectives and the students’ characteristics. Many teachers, parents and student did not understand the best practice of PBS. This would affect the integrity in PBS practice. Teachers did not emphasis the principles and ethics. Their integrity as an innovative public servant may also be affected with the frequently changing assessment system, lack of training and no prior action research. The analysis of findings showed that the teachers viewed that organizational integrity involving the integrity of PBS was difficult to be implemented based on the expectations determined by Malaysia Ministry of Education (KPM). A few elements which assisted in the achievement of PBS integrity were the training, students’ understanding, the parents’ understanding of PBS, environment (involving human resources such as support and appreciation and non-human resources such as technology infrastructure readiness and media). The implications of this study show that teachers, as the PBS implementers, have a strong influence on the integrity of PBS. However, the transformation of behavior involving PBS integrity among teachers requires the stabilisation of support and infrastructure in order to enable the teachers to implement PBS in an ethical manner.

Keywords: Assessment integrity, integrity, perception, school-based assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1562 A Virtual Learning Environment for Deaf Children: Design and Evaluation

Authors: Nicoletta Adamo-Villani

Abstract:

The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.

Keywords: 3D Animation, Virtual Reality, Virtual Learning Environments, User-Centered Design, User-centered Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1561 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: Admissions, algorithms, cloud computing, differentiation, fog computing, leveling, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
1560 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Tami Alghamdi, Terence Soule

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
1559 Remote Training with Self-Assessment in Electrical Engineering

Authors: Zoja Raud, Valery Vodovozov

Abstract:

The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.

Keywords: Advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1558 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1557 Dental Students’ Attitude towards Problem-Based Learning before and after Implementing 3D Electronic Dental Models

Authors: Hai Ming Wong, Kuen Wai Ma, Lavender Yu Xin Yang, Yanqi Yang

Abstract:

Objectives: In recent years, the Faculty of Dentistry of the University of Hong Kong have extended the implementation of 3D electronic models (e-models) into problem-based learning (PBL) of the Bachelor of Dental Surgery (BDS) curriculum, aiming at mutual enhancement of PBL teaching quality and the students’ skills in using e-models. This study focuses on the effectiveness of e-models serving as a tool to enhance the students’ skills and competences in PBL. Methods: The questionnaire surveys are conducted to measure 50 fourth-year BDS students’ attitude change between beginning and end of blended PBL tutorials. The response rate of this survey is 100%. Results: The results of this study show the students’ agreement on enhancement of their learning experience after e-model implementation and their expectation to have more blended PBL courses in the future. The potential of e-models in cultivating students’ self-learning skills reduces their dependence on others, while improving their communication skills to argue about pros and cons of different treatment options. The students’ independent thinking ability and problem solving skills are promoted by e-model implementation, resulting in better decision making in treatment planning. Conclusion: It is important for future dental education curriculum planning to cope with the students’ needs, and offer support in the form of software, hardware and facilitators’ assistance for better e-model implementation.

Keywords: Problem-Based learning, curriculum, dental education, 3-D electronic models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6528
1556 Massive Open Online Course about Content Language Integrated Learning: A Methodological Approach for Content Language Integrated Learning Teachers

Authors: M. Zezou

Abstract:

This paper focuses on the design of a Massive Open Online Course (MOOC) about Content Language Integrated Learning (CLIL) and more specifically about how teachers can use CLIL as an educational approach incorporating technology in their teaching as well. All the four weeks of the MOOC will be presented and a step-by-step analysis of each lesson will be offered. Additionally, the paper includes detailed lesson plans about CLIL lessons with proposed CLIL activities and games in which technology plays a central part. The MOOC is structured based on certain criteria, in order to ensure success, as well as a positive experience that the learners need to have after completing this MOOC. It addresses to all language teachers who would like to implement CLIL into their teaching. In other words, it presents the methodology that needs to be followed so as to successfully carry out a CLIL lesson and achieve the learning objectives set at the beginning of the course. Firstly, in this paper, it is very important to give the definitions of MOOCs and LMOOCs, as well as to explore the difference between a structure-based MOOC (xMOOC) and a connectivist MOOC (cMOOC) and present the criteria of a successful MOOC. Moreover, the notion of CLIL will be explored, as it is necessary to fully understand this concept before moving on to the design of the MOOC. Onwards, the four weeks of the MOOC will be introduced as well as lesson plans will be presented: The type of the activities, the aims of each activity and the methodology that teachers have to follow. Emphasis will be placed on the role of technology in foreign language learning and on the ways in which we can involve technology in teaching a foreign language. Final remarks will be made and a summary of the main points will be offered at the end.

Keywords: Content language integrated learning, connectivist massive open online course, lesson plan, language MOOC, massive open online course criteria, massive open online course, technology, structure-based massive open online course.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
1555 Contributions of Non-Formal Educational Spaces for the Scientific Literacy of Deaf Students

Authors: Rafael Dias Silva

Abstract:

The school is a social institution that should promote learning situations that remain throughout life. Based on this, the teaching activities promoted in museum spaces can represent an educational strategy that contributes to the learning process in a more meaningful way. This article systematizes a series of elements that guide the use of these spaces for the scientific literacy of deaf students and as experiences of this nature are favorable for the school development through the concept of the circularity. The methodology for the didactic use of these spaces of non-formal education is one of the reflections developed in this study and how such environments can contribute to the learning in the classroom. To develop in the student the idea of ​​association making him create connections with the curricular proposal and notice how the proposed activity is articulated. It is in our interest that the experience lived in the museum be shared collaborating for the construction of a scientific literacy and cultural identity through the research.

Keywords: Accessibility in museums, Brazilian sign language, deaf students, teacher training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
1554 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
1553 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
1552 Job Satisfaction and Motivation as Predictors of Lecturers’ Effectiveness in Nigeria Police Academy

Authors: Abdulkareem Hussein Bibire

Abstract:

Job satisfaction and motivation have been given an important attention in psychology because they are seen as main instruments in maintaining organizational growth and development; they are also used to accomplish organizational aims and objectives. However, it has been observed that some institutions failed in motivating and stimulating their workers; in contrast, workers may be motivated but not satisfied with the job and failed to perform efficiently and effectively. It is hoped that the study of this nature would be of significance value to all stakeholders in education specifically, lecturers in higher institutions in Nigeria. Also, it is hoped that the findings of this study will enhance lecturers’ effectiveness and performance in discharging their duties. In the light of the above statements, this study investigated whether job satisfaction and motivation predict lecturers’ effectiveness in Nigeria Police Academy, Wudil, Kano State. Correlational research method was adopted for the study, while purposive sampling technique was used to choose the institution and the sampled lectures (70). Simple random sampling technique was used to select one hundred cadets across the academy. Two instruments were used to elicit information from both lecturers and cadets. These were job satisfaction and motivation; and lecturers’ effectiveness Questionnaires. The instruments were subjected to pilot testing and found to have reliability coefficient of 0.69 and 0.71 respectively. The results of the study revealed that there was a significance relationship among job satisfaction, motivation and lecturers effectiveness in Nigeria Police Academy. There was a significance relationship between job satisfaction and lecturers’ effectiveness in Nigeria Police Academy the cal r is 0.21 while the crt r is 0.19. at p<0.05 and; there was a significance relationship between job motivation and lecturers effectiveness in Nigeria Police Academy the cal r is 0.20 while the crt r is 0.19 at p<0.05This study therefore concluded that there was a significance relationship among job satisfaction, motivation and lecturers effectiveness in Nigeria Police Academy. Based on the data collected, collated and analyzed Recommendations were made for both the lecturers and the Academy management. It is also suggested that lecturers should be industrious in their primary assignment in other to make values to cadets lives and career. And management should also try to enhance lecturers performance by more motivational needs for the lecturers.

Keywords: Satisfaction, motivation, lecturer effectiveness, academy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1551 Age-Based Interface Design for Children’s CAPT Systems

Authors: Saratu Yusuf Ilu, Mumtaz B. Mustafa, Siti Salwah Salim, Mehdi Malekzadeh

Abstract:

Children today use computer based application in various activities especially for learning and education. Many of these tools and application such as the Computer Aided Pronunciation Training (CAPT) systems enable children to explore and experience them with little supervision from the adults. In order for these tools and application to have maximum effect on the children’s learning and education, it must be attractive to the children to use them. This could be achieved with the proper user interface (UI) design. As children grow, so do their ability, taste and preferences. They interact differently with these applications as they grow older. This study reviews several articles on how age factors influence the UI design. The review focuses on age related abilities such as cognitive, literacy, concentration and feedback requirement. We have also evaluated few of existing CAPT systems and determine the influence of age-based factors on the interface design.

Keywords: Children, age-based interaction, learning application, age-based UI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
1550 Machine Learning Methods for Environmental Monitoring and Flood Protection

Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer

Abstract:

More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.

Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084
1549 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
1548 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: Hearing-impaired students, isolation, self-esteem, learning difficulties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1547 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: Constructive alignment, constructivist theory, educational game, outcome-based education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
1546 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks

Authors: Yu-Lin Liao, Ya-Fu Peng

Abstract:

An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.

Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
1545 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
1544 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1543 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
1542 Students' Acceptance of Incorporating Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Never has a revolution affected all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aimed to fill the void of research conducted around that topic. The study explored students' acceptance of incorporating communication technologies in higher education in Kuwait. Students' responses to survey questions presented an overview of the e-learning experience in this country, and drew a framework through which implications and suggestions for future research were discussed to better serve the advancement of e-education in developing countries.

Keywords: Communication technologies, E-learning, Kuwait, Social media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1541 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong

Authors: Yee-May Chan

Abstract:

In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.

Keywords: Competence-based social work, fieldwork, neo-liberal welfare, critical reflective learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
1540 Vocational Skills, Recognition of Prior Learning and Technology: The Future of Higher Education

Authors: Shankar Subramanian Iyer

Abstract:

The vocational education, enhanced by technology and Recognition of Prior Learning (RPL) is going to be the main ingredient of the future of education. This is coming from the various issues of the current educational system like cost, time, type of course, type of curriculum, unemployment, to name the major reasons. Most millennials like to perform and learn rather than learning how to perform. This is the essence of vocational education be it any field from cooking, painting, plumbing to modern technologies using computers. Even a more theoretical course like entrepreneurship can be taught as to be an entrepreneur and learn about its nuances. The best way to learn accountancy is actually keeping accounts for a small business or grocer and learn the ropes of accountancy and finance. The purpose of this study is to investigate the relationship between vocational skills, RPL and new technologies with future employability. This study implies that individual's knowledge and skills are essential aspects to be emphasized in future education and to give credit for prior experience for future employability. Virtual reality can be used to stimulate workplace situations for vocational learning for fields like hospitality, medical emergencies, healthcare, draughtsman ship, building inspection, quantity surveying, estimation, to name a few. All disruptions in future education, especially vocational education, are going to be technology driven with the advent of AI, ML, IoT, VR, VI etc. Vocational education not only helps institutes cut costs drastically, but allows all students to have hands-on experiences, rather than to be observers. The earlier experiential learning theory and the recent theory of knowledge and skills-based learning modified and applied to the vocational education and development of skills is the proposed contribution of this paper. Apart from secondary research study on major scholarly articles, books, primary research using interviews, questionnaire surveys have been used to validate and test the reliability of the suggested model using Partial Least Square- Structural Equation Method (PLS-SEM), the factors being assimilated using an existing literature review. Major findings have been that there exists high relationship between the vocational skills, RPL, new technology to the future employability through mediation of future employability skills.

Keywords: Vocational education, vocational skills, competencies, modern technologies, Recognition of Prior Learning, RPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
1539 Leveraging Reasoning through Discourse: A Case Study in Secondary Mathematics Classrooms

Authors: Cory A. Bennett

Abstract:

Teaching and learning through the use of discourse support students’ conceptual understanding by attending to key concepts and relationships. One discourse structure used in primary classrooms is number talks wherein students mentally calculate, discuss, and reason about the appropriateness and efficiency of their strategies. In the secondary mathematics classroom, the mathematics understudy does not often lend itself to mental calculations yet learning to reason, and articulate reasoning, is central to learning mathematics. This qualitative case study discusses how one secondary school in the Middle East adapted the number talk protocol for secondary mathematics classrooms. Several challenges in implementing ‘reasoning talks’ became apparent including shifting current discourse protocols and practices to a more student-centric model, accurately recording and probing student thinking, and specifically attending to reasoning rather than computations.

Keywords: Discourse, reasoning, secondary mathematics, teacher development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
1538 Strategies for Developing e-LMS for Tanzania Secondary Schools

Authors: Ellen A. Kalinga, R. B. Bagile Burchard, Lena Trojer

Abstract:

Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.

Keywords: Action Research Methodology, OOSA&D, MDA, UML, Open Source LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238