Search results for: Analytic Network Process
7081 Measuring Process Component Design on Achieving Managerial Goals
Authors: Eakong Atiptamvaree, Twittie Senivongse
Abstract:
Process-oriented software development is a new software development paradigm in which software design is modeled by a business process which is in turn translated into a process execution language for execution. The building blocks of this paradigm are software units that are composed together to work according to the flow of the business process. This new paradigm still exhibits the characteristic of the applications built with the traditional software component technology. This paper discusses an approach to apply a traditional technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses, and these process components can be reused to design the business processes of other application domains. The decomposition considers five managerial goals, namely cost effectiveness, ease of assembly, customization, reusability, and maintainability. The paper presents how to design or decompose process components from a business process model and measure some technical features of the design that would affect the managerial goals. A comparison between the measurement values from different designs can tell which process component design is more appropriate for the managerial goals that have been set. The proposed approach can be applied in Web Services environment which accommodates process-oriented software development.Keywords: Business Process Model, Managerial Goals, ProcessComponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15147080 Content and Resources based Mobile and Wireless Video Transcoding
Authors: Ashraf M. A. Ahmad
Abstract:
Delivering streaming video over wireless is an important component of many interactive multimedia applications running on personal wireless handset devices. Such personal devices have to be inexpensive, compact, and lightweight. But wireless channels have a high channel bit error rate and limited bandwidth. Delay variation of packets due to network congestion and the high bit error rate greatly degrades the quality of video at the handheld device. Therefore, mobile access to multimedia contents requires video transcoding functionality at the edge of the mobile network for interworking with heterogeneous networks and services. Therefore, to guarantee quality of service (QoS) delivered to the mobile user, a robust and efficient transcoding scheme should be deployed in mobile multimedia transporting network. Hence, this paper examines the challenges and limitations that the video transcoding schemes in mobile multimedia transporting network face. Then handheld resources, network conditions and content based mobile and wireless video transcoding is proposed to provide high QoS applications. Exceptional performance is demonstrated in the experiment results. These experiments were designed to verify and prove the robustness of the proposed approach. Extensive experiments have been conducted, and the results of various video clips with different bit rate and frame rate have been provided.Keywords: Content, Object detection, Transcoding, Texture, Temporal, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13497079 On the Analysis of IP Traffic Distribution in the Network of Suranaree University of Technology
Authors: Paramet Nualmuenwai, Chutima Prommak
Abstract:
This paper presents the IP traffic analysis. The traffic was collected from the network of Suranaree University of Technology using the software based on the Simple Network Management Protocol (SNMP). In particular, we analyze the distribution of the aggregated traffic during the hours of peak load and light load. The traffic profiles including the parameters described the traffic distributions were derived. From the statistical analysis applying three different methods, including the Kolmogorov Smirnov test, Anderson Darling test, and Chi-Squared test, we found that the IP traffic distribution is a non-normal distribution and the distributions during the peak load and the light load are different. The experimental study and analysis show high uncertainty of the IP traffic.Keywords: IP traffic analysis, IP traffic distribution, Traffic uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15177078 Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency
Authors: M. A. M. El-Bendary, A. E. Abu El-Azm, N. A. El-Fishawy, F. Shawky, F. E. El-Samie
Abstract:
With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.Keywords: Bluetooth, throughput, adaptive packets, EDRpackets, CQDDR, low latency. Channel condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19017077 Optimal Network of Secondary Warehouses for Production-Distribution Inventory Model
Authors: G. M. Arun Prasath, N. Arthi
Abstract:
This work proposed a multi-objective mathematical programming approach to select the appropriate supply network elements. The multi-item multi-objective production-distribution inventory model is formulated with possible constraints under fuzzy environment. The unit cost has taken under fuzzy environment. The inventory model and warehouse location model has combined to formulate the production-distribution inventory model. Warehouse location is important in supply chain network. Particularly, if a company maintains more selling stores it cannot maintain individual secondary warehouse near to each selling store. Hence, maintaining the optimum number of secondary warehouses is important. Hence, the combined mathematical model is formulated to reduce the total expenditure of the organization by arranging the network of minimum number of secondary warehouses. Numerical example has been taken to illustrate the proposed model.Keywords: Fuzzy inventory model, warehouse location model, triangular fuzzy number, secondary warehouse, LINGO software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12397076 Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks
Authors: Iskandar Ishak, Naomie Salim
Abstract:
Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.Keywords: Unstructured peer-to-peer, Searching, Retrieval, Internet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15407075 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26997074 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5037073 Lexical Database for Multiple Languages: Multilingual Word Semantic Network
Authors: K. K. Yong, R. Mahmud, C. S. Woo
Abstract:
Data mining and knowledge engineering have become a tough task due to the availability of large amount of data in the web nowadays. Validity and reliability of data also become a main debate in knowledge acquisition. Besides, acquiring knowledge from different languages has become another concern. There are many language translators and corpora developed but the function of these translators and corpora are usually limited to certain languages and domains. Furthermore, search results from engines with traditional 'keyword' approach are no longer satisfying. More intelligent knowledge engineering agents are needed. To address to these problems, a system known as Multilingual Word Semantic Network is proposed. This system adapted semantic network to organize words according to concepts and relations. The system also uses open source as the development philosophy to enable the native language speakers and experts to contribute their knowledge to the system. The contributed words are then defined and linked using lexical and semantic relations. Thus, related words and derivatives can be identified and linked. From the outcome of the system implementation, it contributes to the development of semantic web and knowledge engineering.
Keywords: Multilingual, semantic network, intelligent knowledge engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19657072 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15707071 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36337070 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23437069 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines
Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé
Abstract:
The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).
Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13317068 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System
Authors: Dana M. Ragab, Jasim A. Ghaeb
Abstract:
The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.
Keywords: Three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9977067 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent
Authors: Ali Ghiaseddin , Akram Nemati
Abstract:
In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15247066 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems
Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo
Abstract:
The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16847065 Synthesis of Wavelet Filters using Wavelet Neural Networks
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16667064 Challenges for Security in Wireless Sensor Networks (WSNs)
Authors: Muazzam A. Khan, Ghalib A. Shah, Muhammad Sher
Abstract:
Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.
Keywords: Wireless senor networks (WSNs), security, denial of service, black hole, cryptography, stenography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29257063 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory
Authors: Danilo López, Nelson Vera, Luis Pedraza
Abstract:
This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15627062 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13407061 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.
Keywords: Utility-scale PV systems, reactive power control, solar irradiance, voltage fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12557060 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8167059 A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks
Authors: Pramod Goyal, S. K. Saxena
Abstract:
The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.Keywords: Dynamic decision model, Seamless handoff, Vertical handoff, Wireless networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20547058 Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility
Authors: Luthful A. Kawsar, Noraida A. Ghani, Anton A. Kamil, Adli Mustafa
Abstract:
In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.Keywords: Arrival rate, Multiple arrival sources, Probability of blocking, State dependent queuing networks, Throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15767057 Modeling and Stability Analysis of Delayed Game Network
Authors: Zixin Liu, Jian Yu, Daoyun Xu
Abstract:
This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.
Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14427056 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16297055 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18347054 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: Video tracking, particle filter, greedy snake, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11937053 QoS Routing in Wired Sensor Networks with Partial Updates
Authors: Arijit Ghos, Tony Gigargis
Abstract:
QoS routing is an important component of Traffic Engineering in networks that provide QoS guarantees. QoS routing is dependent on the link state information which is typically flooded across the network. This affects both the quality of the routing and the utilization of the network resources. In this paper, we examine establishing QoS routes with partial state updates in wired sensor networks. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12077052 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010