Search results for: supervised learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2109

Search results for: supervised learning

1329 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: False negative rate, intrusion detection system, machine learning methods, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1328 Digital Transformation in Developing Countries: A Study into BIM Adoption in Thai Design and Engineering SMEs

Authors: Prompt Udomdech, Eleni Papadonikolaki, Andrew Davies

Abstract:

Building Information Modelling (BIM) is the major technological trend among built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially Small- and Medium-sized Enterprises (SMEs). The main problem for built environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature of BIM competences and adoption.

Keywords: BIM competences and adoption, digital transformation, learning in projects, SMEs, and developing built environment industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
1327 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1326 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh

Abstract:

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1325 Types of Motivation to Learn English: A Case Study of a Rural University, in Quintana Roo, Mexico

Authors: Sandra Valdez-Hernández

Abstract:

Motivation is one of the most important factors when teaching language. Most institutions, at least in Mexico, pay low attention to the types of motivation students have when they are studying English; however, considering the motivation they have may lead to better understanding about their needs and purposes for learning English and the professors may understand and focus on their interests for making them persist in action through the course. This topic has been widely investigated in different countries, but more research needs to be done in Mexico to shed light on this area of potential impact. This quantitative study examines how students (n = 180) at a Rural University in Quintana Roo perceive their different types of motivation, intrinsic and extrinsic, instrumental, and integrative and the attitudes for the language. The findings reveal a high degree of intrinsic and instrumental motivation and provide insights into the perceived attitudes for learning English. Finding ways to persist in action may lead to better comprehending the reasons for learning English.

Keywords: Attitudes for motivation, types of motivation, Extrinsic and Intrinsic motivation, instrumental and integrative motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
1324 Reducing Defects through Organizational Learning within a Housing Association Environment

Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton

Abstract:

Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.

Keywords: Defects, new homes, housing associations, organizational learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1323 Integrating Generic Skills into Disciplinary Curricula

Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi

Abstract:

There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.

Keywords: Curriculum, employability, generic skills, graduate attributes, higher education, information technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
1322 Fairness in Tech-Driven Assessment: Strategies to Safeguard Academic Integrity and Security in Virtual Environment

Authors: B. Ferdousi, J. Bari

Abstract:

Advanced technology can provide vital tools to promote authentic, meaningful, and efficient assessments that measure students' achievement of learning objectives in higher education. However, it also brings several challenges in the learning process. This literature review-based paper describes the challenges in ensuring academic integrity and cybersecurity when students' knowledge and performance are assessed in a digital environment. The paper also reviews the strategies that can be implemented to address these challenges. Using students' authentication and authorship verification of their classwork, designing and developing e-assessments, technology accessibility and instructor training are probable solutions to address these challenges. Given the increasing adoption of digital technology in assessing students' effective learning achievement, this paper will help enhance knowledge and in-depth understanding of measures needed in using technology in academic assessment.

Keywords: Fairness, cybersecurity, e-authentication, academic integrity, e-assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
1321 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
1320 Methods for Case Maintenance in Case-Based Reasoning

Authors: A. Lawanna, J. Daengdej

Abstract:

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1319 The Implementation of Word Study Wall in an Online English Word Memorization Class

Authors: Yidan Shao

Abstract:

With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.

Keywords: Second language acquisition, word morphology, word memorization, the Word Wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280
1318 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
1317 The Effect of Facial Expressions on Students in Virtual Educational Environments

Authors: G. Theonas, D. Hobbs, D. Rigas

Abstract:

The scope of this research was to study the relation between the facial expressions of three lecturers in a real academic lecture theatre and the reactions of the students to those expressions. The first experiment aimed to investigate the effectiveness of a virtual lecturer-s expressions on the students- learning outcome in a virtual pedagogical environment. The second experiment studied the effectiveness of a single facial expression, i.e. the smile, on the students- performance. Both experiments involved virtual lectures, with virtual lecturers teaching real students. The results suggest that the students performed better by 86%, in the lectures where the lecturer performed facial expressions compared to the results of the lectures that did not use facial expressions. However, when simple or basic information was used, the facial expressions of the virtual lecturer had no substantial effect on the students- learning outcome. Finally, the appropriate use of smiles increased the interest of the students and consequently their performance.

Keywords: emotion, facial expression, smile, virtual educational environment, virtual learning, virtual lecturer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
1316 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
1315 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
1314 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: Baby care system, internet of things, deep learning, machine vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1313 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1312 2D Human Motion Regeneration with Stick Figure Animation Using Accelerometers

Authors: Alpha Agape Gopalai, S. M. N. Arosha Senanayake

Abstract:

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1311 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
1310 Ethics, Identity and Organizational Learning –Challenges for South African Managers

Authors: Jacobus A. A. Lazenby

Abstract:

As a result of the ever-changing environment and the demands of rganisations- customers, it is important to recognise the importance of some important managerial challenges. It is the sincere belief that failure to meet these challenges, will ultimately contribute to inevitable problems for organisations. This recognition requires from managers and by implication organisations to be engaged in ethical behaviour, identity awareness and learning organisational behaviour. All these aspects actually reflect on the importance of intellectual capital as the competitive weapons for organisations in the future.

Keywords: Ethical behaviour, identity awareness, learningbehaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1309 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: Precision teaching, writing skills, CBM, Italian Learning Center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
1308 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: H. Anıl, G. Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
1307 An Educational Data Mining System for Advising Higher Education Students

Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy

Abstract:

Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.

In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.

Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5215
1306 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: Learning activity, mathematics, motivation, student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1305 Effectiveness and Usability Evaluation of 'Li2D' Courseware

Authors: Zuraini Hanim Zaini, Wan Fatimah Wan Ahmad

Abstract:

Multimedia courseware has been accepted as a tool that can support teaching and learning process. 'Li2D' courseware was developed to assist student-s visualization on the topic of Loci in Two Dimension. This paper describes an evaluation on the effectiveness and usability of a 'Li2D' courseware. The quasi experiment was used for the effectiveness evaluation. Usability evaluation was accomplished based on four constructs of usability, namely: efficiency, learnability, screen design and satisfaction. An evaluation on the multimedia elements was also conducted. A total of 63 students of Form Two are involved in the study. The students are divided into two groups: control and experimental. The experimental group had to interact with 'Li2D' courseware as part of the learning activities while the control group used the conventional learning methods. The results indicate that the experimental group performed better than the control group in understanding the Loci in Two Dimensions topic. In terms of usability, the results showed that the students agreed on the usability in multimedia elements in the 'Li2D' courseware.

Keywords: Effectiveness, usability and multimedia elements, Loci in Two Dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
1304 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.

Keywords: Education, methodological system, teaching of mathematics, teachers, lesson, students motivation, secondary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
1303 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
1302 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)

Authors: Kandarpa Kumar Sarma

Abstract:

The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.

Keywords: Assamese, Feature, Recurrent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
1301 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
1300 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS

Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba

Abstract:

One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.

Keywords: MOODLE, learning management system, quality assurance, basic science and technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524