Search results for: rock mass classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2242

Search results for: rock mass classification

1462 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
1461 The Cave Paintings of Libyc Inscriptions of Tifra, Kabylia, Algeria

Authors: Samia Ait Ali Yahia

Abstract:

The Tifra site is one of 54 sites with rock paintings discovered in Kabylia (Algeria). It consists of two shelters: Ifran I and Ifran II. From an aesthetic point of view, these two shelters appear poor. It shows a human silhouette, a hand, enigmatic designs and especially Libyc inscriptions. The paint used, is the natural red ocher. Today, these paintings are threatened by the frequentation of tourists to the sites as well as by the degradation which result from it. It is therefore vital to us to list and analyze these paintings before they disappear. The analysis of these paintings will be focused on the epigraphic and iconographic level and their meanings.

Keywords: Cave painting, Libyc inscription, conservation, valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
1460 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
1459 Comparative Exergy Analysis of Ammonia-Water Rankine Cycles and Kalina Cycle

Authors: Kyoung Hoon Kim

Abstract:

This paper presents a comparative exergy analysis of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the exergetical performance of the systems. Results show that maximum exergy efficiency can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better exergy efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Keywords: Ammonia-water, Rankine cycle, Kalina cycle, exergy, exergy destruction, low-temperature heat source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
1458 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1457 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy

Authors: Jing-Gang Xie

Abstract:

As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.

Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
1456 Protein Graph Partitioning by Mutually Maximization of cycle-distributions

Authors: Frank Emmert Streib

Abstract:

The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.

Keywords: Graph partitioning, unweighted graph, protein domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
1455 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk

Abstract:

Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.

Keywords: Bone mineral density, trabecular bone score, obesity, men.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1454 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1453 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Fırat Çalım, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: Circular rod, Out-of-plane free vibration analysis, Transfer Matrix Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1452 Myth in Political Discourse as a Form of Linguistic Consciousness

Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy

Abstract:

The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.

Keywords: Cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
1451 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: Fluid mechanics, compressible flow, heat transfer, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
1450 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
1449 Variations in % Body Fat, the Amount of Skeletal Muscle and the Index of Physical Fitness in Relation to Sports Activity/Inactivity in Different Age Groups of the Adult Population in the Czech Republic

Authors: Hřebíčková Sylva, Grasgruber Pavel, Ondráček Jan, Cacek Jan, KalinaTomáš

Abstract:

The aim of this study was to describe typical changes in several parameters of body composition – the amount of skeletal muscle mass (SMM), % body fat (BF) and body mass index (BMI) - in selected age categories (30+ years) of men and women in the Czech Republic, depending on the degree of sports activity. Study (n = 823, M = 343, F = 480) monitored differences in BF, SM and BMI in five age groups (from 30-39 years to 70+ years). Physically inactive individuals have (p < 0.05) higher % BF in comparison with physically active individuals (29.5 ± 0.59 vs. 27 ± 0.38%), higher BMI (27.3 ± 0.32 vs. 26.1 ± 0.20 kg/m2), but lower SM (39.0 ± 0.33 vs. 40.4 ± 0.21%). The results indicate that with an increasing age, there is a trend towards increasing values of BMI and % BF, and decreasing values of SMM.

Keywords: Body composition, body fat, physical activity, skeletal muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1448 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

Authors: Elif Derya UBEYLI, Inan GULER

Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1447 GPU Implementation for Solving in Compressible Two-Phase Flows

Authors: Sheng-Hsiu Kuo, Pao-Hsiung Chiu, Reui-Kuo Lin, Yan-Ting Lin

Abstract:

A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.

Keywords: Conservative level set method, two-phase flow, dispersion-relation-preserving, graphics processing unit (GPU), multi-threading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1446 Equilibrium and Rate Based Simulation of MTBE Reactive Distillation Column

Authors: Debashish Panda, Kannan A.

Abstract:

Equilibrium and rate based models have been applied in the simulation of methyl tertiary-butyl ether (MTBE) synthesis through reactive distillation. Temperature and composition profiles were compared for both the models and found that both the profiles trends, though qualitatively similar are significantly different quantitatively. In the rate based method (RBM), multicomponent mass transfer coefficients have been incorporated to describe interphase mass transfer. MTBE mole fraction in the bottom stream is found to be 0.9914 in the Equilibrium Model (EQM) and only 0.9904 for RBM when the same column configuration was preserved. The individual tray efficiencies were incorporated in the EQM and simulations were carried out. Dynamic simulation have been also carried out for the two column configurations and compared.

Keywords: Aspen Plus, equilibrium stage model, methyl tertiary-butyl ether, rate based model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4913
1445 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model

Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang

Abstract:

A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.

Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1444 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network

Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim

Abstract:

The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.

Keywords: micom gas-meter, gas safety, zigbee, ubiquitous

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1443 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1442 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

Authors: V. Venkatachalam, S. Selvan

Abstract:

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1441 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures

Authors: Anas M. Fares

Abstract:

The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
1440 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
1439 Usability Evaluation of Online News Websites: A User Perspective Approach

Authors: Qasem A. Al-Radaideh, Emad Abu-Shanab, Shaima Hamam, Hani Abu-Salem

Abstract:

Online news websites are one of the main and wide areas of Mass Media. Since the nineties several Jordanian newspapers were introduced to the World Wide Web to reach various and large numbers of audiances. Examples of these newspapers that have online version are Al-Rai, Ad-Dustor and AlGhad. Other pure online news websites include Ammon and Rum. The main aim of this study is to evaluate online newspaper websites using two assessment measures; usability and web content. This aim is achieved by using a questionnaire based evaluation which is based on the definition of usability and web content in the ISO document as the standard number 9241-part 11. The results are obtained based on 204 audiences- responses. The results of the research showed that the usability factor is relatively good for all Jordanian online newspapers whereas the web content factor is moderate.

Keywords: Communication and mass media, Jordanian online news websites, website content, website usability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4240
1438 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
1437 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: Body composition, diet, exercise, protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
1436 In-situ Chemical Oxidation of Residual TCE by Permanganate in Epikarst

Authors: Nihat Hakan Akyol, Irfan Yolcubal

Abstract:

In-situ chemical oxidation (ISCO) has been widely used for source zone remediation of Dense Nonaqueous Phase Liquids (DNAPLs) in subsurface environments. DNAPL source zones for karst aquifers are generally located in epikarst where the DNAPL mass is trapped either in karst soil or at the regolith contact with carbonate bedrock. This study aims to investigate the performance of oxidation of residual trichloroethylene found in such environments by potassium permanganate. Batch and flow cell experiments were conducted to determine the kinetics and the mass removal rate of TCE. pH change, Cl production, TCE and MnO4 destruction were monitored routinely during experiments. Nonreactive tracer tests were also conducted prior and after the oxidation process to determine the influence of oxidation on flow conditions. The results show that oxidant consumption rate of the calcareous epikarst soil was significant and the oxidant demand was determined to be 20 g KMnO4/kg soil. Oxidation rate of residual TCE (1.26x10-3 s-1) was faster than the oxidant consumption rate of the soil (2.54 - 2.92x10-4 s-1) at only high oxidant concentrations (> 40 mM KMnO4). Half life of TCE oxidation ranged from 7.9 to 10.7 min. Although highly significant fraction of residual TCE mass in the system was destroyed by permanganate oxidation, TCE concentration in the effluent remained above its MCL. Flow interruption tests indicate that efficiency of ISCO was limited by the rate of TCE dissolution and the rate-limited desorption of TCE. The residence time and the initial concentration of the oxidant in the source zone also controlled the efficiency of ISCO in epikarst.

Keywords: Epikarst, in-situ chemical oxidation, permanganate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1435 Analysis of Hollow Rollers Implementation in Flexible Manufacturing of Large Bearings

Authors: S. Barabas, A.Fota.

Abstract:

In this paper is study the possibility of successfully implementing of hollow roller concept in order to minimize inertial mass of the large bearings, with major results in diminution of the material consumption, increasing of power efficiency (in wind power station area), increasing of the durability and life duration of the large bearings systems, noise reduction in working, resistance to vibrations, an important diminution of losses by abrasion and reduction of the working temperature. In this purpose was developed an original solution through which are reduced mass, inertial forces and moments of large bearings by using of hollow rollers. The research was made by using the method of finite element analysis applied on software type Solidworks - Nastran. Also, is study the possibility of rapidly changing the manufacturing system of solid and hollow cylindrical rollers.

Keywords: Large bearings, Von Mises stress, hollow rollers, flexible manufacturing system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1434 Bone Generation through Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, A. Debroy, S. P. Kotha

Abstract:

Bones are dynamic and responsive organs, they regulate their strength and mass according to the loads which they are subjected. Because, the Wnt/β-catenin pathway has profound effects on the regulation of bone mass, we hypothesized that mechanical loading of bone cells stimulates Wnt/β-catenin signaling, which results in the generation of new bone mass. Mechanical loading triggers the secretion of the Wnt molecule, which after binding to transmembrane proteins, causes GSK-3β (Glycogen synthase kinase 3 beta) to cease the phosphorylation of β-catenin. β-catenin accumulation in the cytoplasm, followed by its transport into the nucleus, binding to transcription factors (TCF/LEF) that initiate transcription of genes related to bone formation. To test this hypothesis, we used TOPGAL (Tcf Optimal Promoter β-galactosidase) mice in an experiment in which cyclic loads were applied to the forearm. TOPGAL mice are reporters for cells effected by the Wnt/β-catenin signaling pathway. TOPGAL mice are genetically engineered mice in which transcriptional activation of β- catenin, results in the production of an enzyme, β-galactosidase. The presence of this enzyme allows us to localize transcriptional activation of β-catenin to individual cells, thereby, allowing us to quantify the effects that mechanical loading has on the Wnt/β-catenin pathway and new bone formation. The ulnae of loaded TOPGAL mice were excised and transverse slices along different parts of the ulnar shaft were assayed for the presence of β-galactosidase. Our results indicate that loading increases β-catenin transcriptional activity in regions where this pathway is already primed (i.e. where basal activity is already higher) in a load magnitude dependent manner. Further experiments are needed to determine the temporal and spatial activation of this signaling in relation to bone formation.

Keywords: Bone Resorption and Formation, Mechanical Loading of Bone, Wnt Signaling Pathway & β-catenin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1433 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar are 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: Coal tar, pyrolysis, gas chromatography-mass spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3661