Search results for: backstepping controller
46 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network
Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.
Keywords: artificial neural networks, aquaculture, forced circulation hot water system,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205545 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.
Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43244 Using Emotional Learning in Rescue Simulation Environment
Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade
Abstract:
RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162143 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184842 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431141 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.
Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257640 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109439 Spacecraft Neural Network Control System Design using FPGA
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.
Keywords: Spacecraft, neural network, FPGA, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300938 Siding Mode Control of Pitch-Rate of an F-16 Aircraft
Authors: Ekprasit Promtun, Sridhar Seshagiri
Abstract:
This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 322137 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214436 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77935 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20734 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74233 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186832 Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field
Authors: Nan-Chyuan Tsai, Chao-Wen Chiang, Bai-Lu Wang
Abstract:
The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.Keywords: Sliding Mode Control, Singular Perturbation, Variable Inertia Flywheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145631 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777030 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259229 Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System
Authors: N. Yuvaraj, V. B. Prakash, D. Venkatraj
Abstract:
This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.Keywords: Ubiquitous computing, differential GPS, fleet management system, wireless transmitter and receiver computerized median i.e. linked blocks (removable).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199028 Feasibility and Penetration of Electric Vehicles in Indian Power Grid
Authors: Kashyap L. Mokariya, Varsha A. Shah, Makarand M. Lokhande
Abstract:
As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of energy security and climate change. Due to rising demand of fuel and its dependency on foreign countries that affects the GDP of nation, suggests that penetration of electrical vehicle will increase in near future. So in this context analysis is done if the 10 percent of conventional vehicles including cars, three wheelers and two wheelers becomes electrical vehicles in near future which is also a part of Nations Electric Mobility Mission Plan then the saving which improves the nation’s economy is analyzed in detail. Whether the Indian electricity grid is capable of taking this load with current generation and demand all over the country is also analyzed in detail. Current situation of Indian grid is analyzed and how the gap between generation and demand can be reduced is discussed in terms of increasing generation capacity and energy conservation measures. Electrical energy conservation measures in Industry and especially in rural areas have been analyzed to improve performance of Indian electricity grid in context of electrical vehicle penetration in near future. Author was a part of Vishvakarma yojna in which energy losses were measured in 255 villages of Gujarat and solutions were suggested to mitigate them and corresponding reports was submitted to the authorities of Gujarat government.
Keywords: Vehicle penetration, feasibility, Energy conservation, future grid, Energy security, Automatic pf controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410927 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.
Keywords: Agent communication, introspective agent, isolation of agent, policy enforcement system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64426 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network
Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain
Abstract:
This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.
Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35825 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205124 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140623 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC
Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang
Abstract:
Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.
Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220622 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.
Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12821 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182020 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper
Authors: H. Juma, F. Al-hujaili, R. Kashani
Abstract:
Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.
Keywords: Tuned mass damper, air spring, semi-active, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65619 Respirator System For Total Liquid Ventilation
Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153318 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69617 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753