Search results for: Decision analysis
8904 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15618903 Modeling and Analysis of a Cruise Control System
Authors: Anthony Spiteri Staines
Abstract:
This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23688902 Knowledge Sharing Behavior and Cognitive Dissonance: The Influence of Assertive Conflict Management Strategy and Team Psychological Safety
Authors: Matthew P. Mancini, Vincent Ribiere
Abstract:
Today’s workers face more numerous and complex challenges and are required to be increasingly interdependent and faster learners. Knowledge sharing activities between people have been understood as a significant element affecting organizational innovation performance. While they do have the potential to spark cognitive conflict, disagreement is important from an organizational perspective because it can stimulate the development of new ideas and perhaps pave the way for creativity, innovation, and competitive advantage. How teams cope with the cognitive conflict dimension of knowledge sharing and the associated interpersonal risk is what captures our attention. Specifically, assertive conflict management strategies have a positive influence on knowledge sharing behaviors, and team psychological safety has a positive influence on knowledge sharing intention. This paper focuses on explaining the impact that these factors have on the shaping of an individual’s decision to engage or not in knowledge sharing activities. To accomplish this, we performed an empirical analysis on the results of our questionnaire about knowledge-sharing related conflict management and team psychological safety in pharmaceutical enterprises located in North America, Europe, and Asia. First, univariate analysis is used to characterize behavior regarding conflict management strategy into two groups. Group 1 presents assertive conflict management strategies and group 2 shows unassertive ones. Then, by using SEM methodology, we evaluated the relationships between them and the team psychological safety construct with the knowledge sharing process. The results of the SEM analysis show that assertive conflict management strategies affect the knowledge sharing process the most with a small, but significant effect from team psychological safety. The findings suggest that assertive conflict management strategies are just as important as knowledge sharing intentions for encouraging knowledge sharing behavior. This paper provides clear insights into how employees manage the sharing of their knowledge in the face of conflict and interpersonal risk and the relative importance of these factors in sustaining productive knowledge sharing activities.
Keywords: Cognitive dissonance, conflict management, knowledge sharing, organizational behavior, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15908901 Data Mining Determination of Sunlight Average Input for Solar Power Plant
Authors: Fl. Loury, P. Sablonière, C. Lamoureux, G. Magnier, Th. Gutierrez
Abstract:
A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.
Keywords: Base Input Reconstruction, Data Mining, Efficiency Factor, Information Pattern Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15348900 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19728899 Prediction of Reusability of Object Oriented Software Systems using Clustering Approach
Authors: Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand
Abstract:
In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.Keywords: CK-Metric, Desicion Tree, Kmeans, Reusability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19178898 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis
Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21548897 Project Selection Using Fuzzy Group Analytic Network Process
Authors: Hamed Rafiei, Masoud Rabbani
Abstract:
This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.
Keywords: Analytic network process, Fuzzy sets theory, Nonlinear programming, Project selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17748896 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24848895 A Semi-Classical Signal Analysis Method for the Analysis of Turbomachinery Flow Unsteadiness
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati, Sofiane Khelladi, Farid Bakir
Abstract:
This paper presents the use of a semi-classical signal analysis method that has been developed recently for the analysis of turbomachinery flow unsteadiness. We will focus on the correlation between theSemi-Classical Signal Analysis parameters and some physical parameters in relation with turbomachinery features. To demonstrate the potential of the proposed approach, a static pressure signal issued from a rotor/stator interaction of a centrifugal pump is studied. Several configurations of the pump are compared.Keywords: Semi-classical signal analysis, turbomachines, newindices, physical parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14568894 The Emergence of Smart Growth in Developed and Developing Countries and Its Possible Application in Kabul City, Afghanistan
Authors: Bashir Ahmad Amiri, Nsenda Lukumwena
Abstract:
The global trend indicates that more and more people live and will continue to live in urban areas. Today cities are expanding both in physical size and number due to the rapid population growth along with sprawl development, which caused the cities to expand beyond the growth boundary and exerting intense pressure on environmental resources specially farmlands to accommodate new housing and urban facilities. Also noticeable is the increase in urban decay along with the increase of slum dwellers present another challenge that most cities in developed and developing countries have to deal with. Today urban practitioners, researchers, planners, and decision-makers are seeking for alternative development and growth management policies to house the rising urban population and also cure the urban decay and slum issues turn to Smart Growth to achieve their goals. Many cities across the globe have adopted smart growth as an alternative growth management tool to deal with patterns and forms of development and to cure the rising urban and environmental problems. The method used in this study is a literature analysis method through reviewing various resources to highlight the potential benefits of Smart Growth in both developed and developing countries and analyze, to what extent it can be a strategic alternative for Afghanistan’s cities, especially the capital city. Hence a comparative analysis is carried on three countries, namely the USA, China, and India to identify the potential benefits of smart growth likely to serve as an achievable broad base for recommendations in different urban contexts.
Keywords: Growth management, housing, Kabul city, smart growth, urban-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9548893 Fuzzy Numbers and MCDM Methods for Portfolio Optimization
Authors: Thi T. Nguyen, Lee N. Gordon-Brown
Abstract:
A new deployment of the multiple criteria decision making (MCDM) techniques: the Simple Additive Weighting (SAW), and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for portfolio allocation, is demonstrated in this paper. Rather than exclusive reference to mean and variance as in the traditional mean-variance method, the criteria used in this demonstration are the first four moments of the portfolio distribution. Each asset is evaluated based on its marginal impacts to portfolio higher moments that are characterized by trapezoidal fuzzy numbers. Then centroid-based defuzzification is applied to convert fuzzy numbers to the crisp numbers by which SAW and TOPSIS can be deployed. Experimental results suggest the similar efficiency of these MCDM approaches to selecting dominant assets for an optimal portfolio under higher moments. The proposed approaches allow investors flexibly adjust their risk preferences regarding higher moments via different schemes adapting to various (from conservative to risky) kinds of investors. The other significant advantage is that, compared to the mean-variance analysis, the portfolio weights obtained by SAW and TOPSIS are consistently well-diversified.Keywords: Fuzzy numbers, SAW, TOPSIS, portfolio optimization, higher moments, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21518892 The Leaves of a Tree
Authors: Zhu Jiaming, Yu Mengna
Abstract:
In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16028891 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach
Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee
Abstract:
The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.
Keywords: Participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14898890 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23738889 A Critical Review of the Adequacy of EIA Reports-Evidence from Pakistan
Authors: Obaidullah Nadeem, Rizwan Hameed
Abstract:
The preparation of good-quality Environmental Impact Assessment (EIA) reports contribute to enhancing overall effectiveness of EIA. This component of the EIA process becomes more important in situation where public participation is weak and there is lack of expertise on the part of the competent authority. In Pakistan, EIA became mandatory for every project likely to cause adverse environmental impacts from July 1994. The competent authority also formulated guidelines for preparation and review of EIA reports in 1997. However, EIA is yet to prove as a successful decision support tool to help in environmental protection. One of the several reasons of this ineffectiveness is the generally poor quality of EIA reports. This paper critically reviews EIA reports of some randomly selected projects. Interviews of EIA consultants, project proponents and concerned government officials have also been conducted to underpin the root causes of poor quality of EIA reports. The analysis reveals several inadequacies particularly in areas relating to identification, evaluation and mitigation of key impacts and consideration of alternatives. The paper identifies some opportunities and suggests measures for improving the quality of EIA reports and hence making EIA an effective tool to help in environmental protection.
Keywords: Environmental Impact Assessment, EIA Guidelines, EIA Reports, Pakistan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33188888 Systematic Functional Analysis Methods for Design Retrieval and Documentation
Authors: L. Zehtaban, D. Roller
Abstract:
Apart from geometry, functionality is one of the most significant hallmarks of a product. The functionality of a product can be considered as the fundamental justification for a product existence. Therefore a functional analysis including a complete and reliable descriptor has a high potential to improve product development process in various fields especially in knowledge-based design. One of the important applications of the functional analysis and indexing is in retrieval and design reuse concept. More than 75% of design activity for a new product development contains reusing earlier and existing design know-how. Thus, analysis and categorization of product functions concluded by functional indexing, influences directly in design optimization. This paper elucidates and evaluates major classes for functional analysis by discussing their major methods. Moreover it is finalized by presenting a noble hybrid approach for functional analysis.Keywords: Functional analysis, design reuse, functionalindexing and representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51838887 Digital Library Evaluation by SWARA-WASPAS Method
Authors: Mehmet Yörükoğlu, Serhat Aydın
Abstract:
Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.
Keywords: Digital library, multi criteria decision making, SWARA-WASPAS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9088886 Impact of Brand Origin on Brand Loyalty: A Case of Personal Care Products in Pakistan
Authors: Aimen Batool Bint-E-Rashid, Syed Muhammad Dawood Ali Shah, Muhammad Usman Farooq, Mahgul Anwar
Abstract:
As the world is progressing, the needs and demands of the consumer market are also changing. Nowadays the trends of consumer purchase decisions are dependent upon multiple factors. This study aims to identify the influential impact of country of origin over the perception and devotion towards daily personal care products specifically in reference to the knowledge and awareness regarding that particular brand in Pakistan. To corroborate this study, a 30-item brand origin questionnaire has been used with 300 purchase decision makers belonging to different age groups. To illustrate this study, a model has been developed based on brand origin, brand awareness and brand loyalty. Correlation and regression analysis have been used to find out the results which conclude the findings on the perspective of Pakistan’s consumer market as that brand origin has a direct relationship with brand loyalty provided that the consumer has a positive brand awareness. Support for the fact that brand origin impacts brand loyalty through brand awareness has been presented in this study.
Keywords: Brand awareness, brand loyalty, brand origin, personal care products, P&G, Unilever.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11148885 Finger Vein Recognition using PCA-based Methods
Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri
Abstract:
In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26898884 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6048883 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.
Keywords: Big data, evolutionary computing, cloud, precision technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7738882 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19998881 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29358880 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating
Authors: A. Amrani, O. Allali, A. Ben Hamida, F. Defrance, S. Morland, E. Pineau, T. Lacroix
Abstract:
The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.
Keywords: Climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6648879 Statistical Texture Analysis
Authors: G. N. Srinivasan, G. Shobha
Abstract:
This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9518878 Procurement for Management Services in Delivery of Public Construction Projects in Poland
Authors: A. Leśniak, E. Plebankiewicz, K. Zima
Abstract:
Construction projects can be implemented under various contractual and organizational systems. They can be divided into two groups: systems without the managing company where the Client manages the process, and systems with the managing company, where management is entrusted to an external company. In the public sector of the Polish market there are two ways of delivery of construction projects with the participation of the manager: one is to assign operations to another party, the so called Project Supervisor, whilst the other results from the application of FIDIC conditions of contract, which entail appointment of the Engineer. The decision is to be made by the Client and depends on various factors. On the public procurement market in Poland the selection of construction project manager boils down to awarding the contract for such a service. The selection can be done by one of eight public procurement procedures identified by the procurement law. The paper provides the analysis of 96 contracts for services awarded in 2011, which employed construction management. The study aimed to investigate the methods and criteria for selecting managers, applied in practice by the Polish public Clients.
Keywords: construction management, construction services, methods and criteria of tender selection, public procurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17928877 The Documentary Analysis of Meta-Analysis Research in Violence of Media
Authors: Proud Arunrangsiwed
Abstract:
The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects and ordinary lifestyle of each media consumer.
Keywords: Aggressive, future direction, meta-analysis, media, violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27088876 Proposal for a Ultra Low Voltage NAND gate to withstand Power Analysis Attacks
Authors: Omid Mirmotahari, Yngvar Berg
Abstract:
In this paper we promote the Ultra Low Voltage (ULV) NAND gate to replace either partly or entirely the encryption block of a design to withstand power analysis attack.
Keywords: Differential Power Analysis (DPA), Low Voltage (LV), Ultra Low Voltage (ULV), Floating-Gate (FG), supply current analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19598875 Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS
Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang
Abstract:
Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.Keywords: Environmental management system, environmental aspect, risk assessment, life cycle assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222