Search results for: Computer aided diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1769

Search results for: Computer aided diagnosis

989 Buckling of Plates on Foundation with Different Types of Sides Support

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.

The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.

To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.

Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.

The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.

The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.

Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
988 Computer Simulation of Low Volume Roads Made from Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.

Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
987 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181
986 Chlorophyll Fluorescence as Criterion for the Diagnosis Salt Stress in Wheat (Triticum aestivum) Plants

Authors: M. Abdeshahian, M. Nabipour, M. Meskarbashee

Abstract:

To investigate effect of salt stress on Chlorophyll fluorescence four cultivars (fong,star,chamran and kharchia) of wheat (Triticum aestivum) plants subjected to salinity levels ( control,8,12 and 16 dsm-1 ) from one week after emergence to the end of stem elongation under greenhouse condition . results showed that quantum yield of photosystem II from light adopted leaves (ΦPSII), Photochemical quenching (qP) ,quantum yield of dark adopted leaves (fv/fm) and non photochemical quenching (NPq) were affected by salt stress . Salinity levels affected photosynthetic rate. Star and fong cultivars showed minimum and maximum levels of photosynthetic rate in respectively. Minimum photosynthetic rate differences between levels of salinity were shown in Kharchia. Shoot dry matter of all cultivars decreased by increasing salinity levels. Results showed that non photochemical quenching by salinity levels attribute to the decreases in shoot dry matter.

Keywords: salt stress, wheat, chlorophyll fluorescence, photosynthesis , shoot dry matter .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
985 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study

Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara

Abstract:

Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.

Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
984 Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm

Authors: Fırat Matur, Yekta Ülgen

Abstract:

Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for dominant arm. With the post-menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporic population around lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.830, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven angular behavior of the dominant arm without performing any complex calculation.

Keywords: Bio-impedance spectroscopy, bone mineral density, characteristic frequency, osteoporosis, receiver operating curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
983 Application of Scientific Metrics to Evaluate Academic Reputation in Different Research Areas

Authors: Cristiano R. Cervi, Renata Galante, José Palazzo M. de Oliveira

Abstract:

In this paper, we address the problem of identifying academic reputation of researchers using scientific metrics in different research areas. Due to the characteristics of each area, researchers can present different behaviors. In previous work, we define Rep-Index that makes use of a profile template to individually identify the reputation of researchers. The Rep-Index is comprehensive and adaptive because involves hole trajectory of the researcher built throughout his career and can be used in different areas and in different contexts. Now, we compare our metric (Rep-Index) with the h-index and the g-index through experiments with researchers in the fields of Economics, Dentistry and Computer Science. We analyze the trajectory of 830 Brazilian researchers from the National Council of Technological and Scientific Development (CNPq), which receive grants research productivity. The grants are aimed at productivity researchers that stand out among their peers, enhancing their scientific normative criteria established by CNPq. Of the 830 researchers, 210 are in the area of Economics, 216 of Dentistry e 404 of Computer Science. The experiments show that our metric is strongly correlated with h-index, g-index and CNPq ranking. We also show good results for our hypothesis that our metric can be used to evaluate research in several areas. We apply our metric (Rep-Index) to compare the behavior of researchers in relation to their h-index and g-index through extensive experiments. The experiments showed that our metric is strongly correlated with h-index, g-index and CNPq ranking.

Keywords: Researcher reputation, profile model, scientific metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
982 The Contribution of Diet and Lifestyle Factors in the Prevalence of Irritable Bowel Syndrome

Authors: Alexander Dao, Oscar Wambuguh

Abstract:

Irritable Bowel Syndrome (IBS) is a heterogeneous functional bowel disease that is characterized by chronic visceral abdominal pain and abnormal bowel function and habits. Its multifactorial pathophysiology and mechanisms are still largely a mystery to the contemporary biomedical community, although there are many hypotheses to try to explain IBS’s presumed physiological, psychosocial, genetic, and environmental etiologies. IBS’s symptomatic presentation is varied and divided into four major subtypes: IBS-C, IBS-D, IBS-M, and IBS-U. Given its diverse presentation and unclear mechanisms, diagnosis is done through a combination of positive identification utilizing the “Rome IV Irritable Bowel Syndrome Criteria'' (Rome IV) diagnostic criteria while also excluding other potential conditions with similar symptoms. Treatment of IBS is focused on the management of symptoms using an assortment of pharmaceuticals, lifestyle changes, and dietary changes, with future potential in microbial treatment and psychotherapy as other therapy methods. Its chronic, heterogeneous nature and disruptive gastrointestinal (GI) symptoms are negatively impactful on patients’ daily lives, health systems, and society. However, with a better understanding of the gaps in knowledge and technological advances in IBS’s pathophysiology, management, and treatment options, there is optimism for the millions of people worldwide who are suffering from the debilitating effects of IBS.

Keywords: Irritable bowel syndrome, lifestyle, diet, functional gastrointestinal disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200
981 Medical Knowledge Management in Healthcare Industry

Authors: B. Stroetmann, A. Aisenbrey

Abstract:

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging and therapy, laboratory diagnostics, medical information technology, and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better, and more cost effective. The optimization of clinical workflows requires a multidisciplinary focus and a collaborative approach of e.g. medical advisors, researchers and scientists as well as healthcare economists. This new form of collaboration brings together experts with deep technical experience, physicians with specialized medical knowledge as well as people with comprehensive knowledge about health economics. As Charles Darwin is often quoted as saying, “It is neither the strongest of the species that survive, nor the most intelligent, but the one most responsive to change," We believe that those who can successfully manage this change will emerge as winners, with valuable competitive advantage. Current medical information and knowledge are some of the core assets in the healthcare industry. The main issue is to connect knowledge holders and knowledge recipients from various disciplines efficiently in order to spread and distribute knowledge.

Keywords: Business Excellence, Clinical Knowledge, Knowledge Management, Knowledge Services, Learning Organizations, Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
980 A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.

Keywords: Fuzzy Logic, Internet, Electronic Commerce, Intelligent Portals, Electronic Shopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
979 The Emotional Life of Patients with Chronic Diseases: A Framework for Health Promotion Strategies

Authors: Leslie Beale

Abstract:

Being a patient with a chronic disease is both a physical and emotional experience. The ability to recognize a patient’s emotional health is an important part of a health care provider’s skills. For the purposes of this paper, emotional health is viewed as the way that we feel, and the way that our feelings affect us. Understanding the patient’s emotional health leads to improved provider-patient relationships and health outcomes. For example, when a patient first hears his or her diagnosis from a provider, they might find it difficult to cope with their emotions. Struggling to cope with emotions interferes with the patient’s ability to read, understand, and act on health information and services. As a result, the patient becomes more frustrated and confused, creating barriers to accessing healthcare services. These barriers are challenging for both the patient and their healthcare providers. There are five basic emotions that are part of who we are and are always with us: fear, anger, sadness, joy, and compassion. Living with a chronic disease however can cause a patient to experience and express these emotions in new and unique ways. Within the provider-patient relationship, there needs to be an understanding that each patient experiences these five emotions and, experiences them at different times. In response to this need, the paper highlights a health promotion framework for patients with chronic disease. This framework emphasizes the emotional health of patients.

Keywords: Health promotion, emotional health, patients with chronic disease, patient-centered care.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
978 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
977 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
976 Age, Body Composition, Body Mass Index and Chronic Venous Diseases in Postmenopausal Women

Authors: Grygorii Kostromin, Vladyslav Povoroznyuk

Abstract:

Chronic venous diseases (CVD) are one of the common, though controversial problems in medicine. It is generally accepted that this pathology predominantly occurs in women. The issue of excessive weight as a risk factor for CVD is still considered debatable. To the author's best knowledge, today in Ukraine, there are barely any studies that describe the relationship between CVD and obesity. Our study aims to determine the association between age, body composition, obesity and CVD in postmenopausal women. The study was conducted in D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine. We have examined 96 postmenopausal women aged 46-85 years (mean age – 66.19 ± 0.96 years), who were divided into two groups depending on the presence of CVD. The women were examined by vascular surgeons. For the diagnosis of CVD, we used clinical, anatomic and pathophysiologic classifications. We also performed clinical, ultrasound and densitometry examinations. We found that the CVD frequency in postmenopausal women increased with age (from 72% in those aged 45-59 years to 84% in those aged 75-89 years). A significant correlation between the total fat mass and age was determined in postmenopausal women with CVD. We also observed a significant correlation between the lower extremities’ fat mass and age in both examined groups. A significant correlation between body mass index and age was determined only in postmenopausal women without CVD.

Keywords: Chronic venous disease, risk factors, age, obesity, postmenopausal women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
975 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
974 The Perception on 21st Century Skills of Nursing Instructors and Nursing Students at Boromarajonani College of Nursing, Chonburi

Authors: Kamolrat Turner, Somporn Rakkwamsuk, Ladda Leungratanamart

Abstract:

The aim of this descriptive study was to determine the perception of 21st century skills among nursing professors and nursing students at Boromarajonani College of Nursing, Chonburi. A total of 38 nursing professors and 75 second year nursing students took part in the study. Data were collected by 21st century skills questionnaires comprised of 63 items. Descriptive statistics were used to describe the findings. The results have shown that the overall mean scores of the perception of nursing professors on 21st century skills were at a high level. The highest mean scores were recorded for computing and ICT literacy, and career and leaning skills. The lowest mean scores were recorded for reading and writing and mathematics. The overall mean scores on perception of nursing students on 21st century skills were at a high level. The highest mean scores were recorded for computer and ICT literacy, for which the highest item mean scores were recorded for competency on computer programs. The lowest mean scores were recorded for the reading, writing, and mathematics components, in which the highest item mean score was reading Thai correctly, and the lowest item mean score was English reading and translate to other correctly. The findings from this study have shown that the perceptions of nursing professors were consistent with those of nursing students. Moreover, any activities aiming to raise capacity on English reading and translate information to others should be taken into the consideration.

Keywords: 21st century skills, perception, nursing instructor, nursing student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
973 Memorabilia of Suan Sunandha through Interactive User Interface

Authors: Nalinee Sophatsathit

Abstract:

The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.

Keywords: Interactive user navigation, high-functionality context, situational context, human-computer interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
972 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
971 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
970 A Cost Effective Approach to Develop Mid-size Enterprise Software Adopted the Waterfall Model

Authors: M. N. Hasnine, M. K. H. Chayon, M. M. Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: End-user Application Development, Enterprise Software Design, Information Resource Management, Usability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
969 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
968 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
967 A Simple Affymetrix Ratio-transformation Method Yields Comparable Expression Level Quantifications with cDNA Data

Authors: Chintanu K. Sarmah, Sandhya Samarasinghe, Don Kulasiri, Daniel Catchpoole

Abstract:

Gene expression profiling is rapidly evolving into a powerful technique for investigating tumor malignancies. The researchers are overwhelmed with the microarray-based platforms and methods that confer them the freedom to conduct large-scale gene expression profiling measurements. Simultaneously, investigations into cross-platform integration methods have started gaining momentum due to their underlying potential to help comprehend a myriad of broad biological issues in tumor diagnosis, prognosis, and therapy. However, comparing results from different platforms remains to be a challenging task as various inherent technical differences exist between the microarray platforms. In this paper, we explain a simple ratio-transformation method, which can provide some common ground for cDNA and Affymetrix platform towards cross-platform integration. The method is based on the characteristic data attributes of Affymetrix- and cDNA- platform. In the work, we considered seven childhood leukemia patients and their gene expression levels in either platform. With a dataset of 822 differentially expressed genes from both these platforms, we carried out a specific ratio-treatment to Affymetrix data, which subsequently showed an improvement in the relationship with the cDNA data.

Keywords: Gene expression profiling, microarray, cDNA, Affymetrix, childhood leukaemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
966 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
965 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
964 Applying the Regression Technique for Prediction of the Acute Heart Attack

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.

Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
963 Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

Authors: Jia-Rong Yeh, Ai-Hsien Li, Jiann-Shing Shieh, Yen-An Su, Chi-Yu Yang

Abstract:

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Keywords: Signal processing, electrocardiography (ECG), QRS complex, arrhythmia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
962 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4538
961 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
960 Hardiness vs Alienation Personality Construct Essentially Explains Burnout Proclivity and Erroneous Computer Entry Problems in Rural Hellenic Hospital Labs

Authors: Angela–M. Paleologou, Aphrodite Dellaporta

Abstract:

Erroneous computer entry problems [here: 'e'errors] in hospital labs threaten the patients-–health carers- relationship, undermining the health system credibility. Are e-errors random, and do lab professionals make them accidentally, or may they be traced through meaningful determinants? Theories on internal causality of mistakes compel to seek specific causal ascriptions of hospital lab eerrors instead of accepting some inescapability. Undeniably, 'To Err is Human'. But in view of rapid global health organizational changes, e-errors are too expensive to lack in-depth considerations. Yet, that efunction might supposedly be entrenched in the health carers- job description remains under dispute – at least for Hellenic labs, where e-use falls behind generalized(able) appreciation and application. In this study: i) an empirical basis of a truly high annual cost of e-errors at about €498,000.00 per rural Hellenic hospital was established, hence interest in exploring the issue was sufficiently substantiated; ii) a sample of 270 lab-expert nurses, technicians and doctors were assessed on several personality, burnout and e-error measures, and iii) the hypothesis that the Hardiness vs Alienation personality construct disposition explains resistance vs proclivity to e-errors was tested and verified: Hardiness operates as a resilience source in the encounter of high pressures experienced in the hospital lab, whereas its 'opposite', i.e., Alienation, functions as a predictor, not only of making e-errors, but also of leading to burn-out. Implications for apt interventions are discussed.

Keywords: Hospital lab, personality hardiness/alienation, e-errors' cost, burnout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934