Search results for: tail classification.
418 Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826417 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708416 The Presence of Enterobacters (E.Coli and Salmonella spp.) in Industrial Growing Poultry in Albania
Authors: Boci J., Çabeli P., Shtylla T., Kumbe I.
Abstract:
The development of the poultry industry in Albania is mainly based on the existence of intensive modern farms with huge capacities, which often are mixed with other forms. Colibacillosis is commonly displayed regardless of the type of breeding, delivering high mortality in poultry industry. The mechanisms with which pathogen enterobacters are able to cause the infection in poultry are not yet clear. The routine diagnose in the field, followed by isolation of E. coli and species of Salmonella genres in reference laboratories cannot lead in classification or full recognition of circulative strains in a territory, if it is not performed a differentiation among the present microorganisms in intensive farms and those in rural areas. In this study were isolated 1.496 strains of E. coli and 378 Salmonella spp. This study, presents distribution of poultry pathogenosity of E.coli and Salmonella spp., based on the usage of innovative diagnostic methods.
Keywords: poultry, E.coli, Salmonella spp., Enterobacter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071415 Technology and Its Social Implications: Myths and Realities in the Interpretation of the Concept
Authors: E. V. Veraszto, J. T. F. Camargo, D. Silva, N. A. Miranda, F. O. Simon, S. F. Amaral, L. V. Freitas
Abstract:
The concept of technology as well as itself has evolved continuously over time, such that, nowadays, this concept is still marked by myths and realities. Even the concept of science is frequently misunderstood as technology. In this way, this paper presents different forms of interpretation of the concept of technology in the course of history, as well as the social and cultural aspects associated with it, through an analysis made by means of insights from sociological studies of science and technology and its multiple relations with society. Through the analysis of contents, the paper presents a classification of how technology is interpreted in the social sphere and search channel efforts to show how a broader understanding can contribute to better interpretations of how scientific and technological development influences the environment in which we operate. The text also presents a particular point of view for the interpretation of the concept from the analysis throughout the whole work.
Keywords: Technology, conceptions of technology, technological myths, definition of technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540414 Pervasive Differentiated Services: A QoS Model for Pervasive Systems
Authors: Sherif G. Aly
Abstract:
In this article, we introduce a mechanism by which the same concept of differentiated services used in network transmission can be applied to provide quality of service levels to pervasive systems applications. The classical DiffServ model, including marking and classification, assured forwarding, and expedited forwarding, are all utilized to create quality of service guarantees for various pervasive applications requiring different levels of quality of service. Through a collection of various sensors, personal devices, and data sources, the transmission of contextsensitive data can automatically occur within a pervasive system with a given quality of service level. Triggers, initiators, sources, and receivers are four entities labeled in our mechanism. An explanation of the role of each is provided, and how quality of service is guaranteed.
Keywords: Pervasive systems, quality of service, differentiated services, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495413 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization
Authors: M. F. Zaiyadi, B. Baharudin
Abstract:
Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067412 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis
Authors: Carlos Huertas, Reyes Juarez-Ramirez
Abstract:
Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588411 A Proposed Approach for Emotion Lexicon Enrichment
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455410 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132409 Evaluation of Clustering Based on Preprocessing in Gene Expression Data
Authors: Seo Young Kim, Toshimitsu Hamasaki
Abstract:
Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.
Keywords: Gene expression, clustering, data preprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739408 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment
Authors: Khaled Harrar, Rachid Jennane
Abstract:
The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.Keywords: Osteoporosis, fractal dimension, fractal signature, bone mineral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326407 Bone Ash Impact on Soil Shear Strength
Authors: G. M. Ayininuola, A. O. Sogunro
Abstract:
Most failures of soil have been attributed to poor shear strength. Consequently, the present paper investigated the suitability of cattle bone ash as a possible additive to improve the shear strength of soils. Four soil samples were collected and stabilized with prepared bone ash in proportions of 3%, 5%, 7%, 10%, 15% and 20% by dry weight. Chemical analyses of the bone ash; followed by classification, compaction, and triaxial shear tests of the treated soil samples were conducted. Results obtained showed that bone ash contained high proportion of calcium oxide and phosphate. Addition of bone ash to soil samples led to increase in soil shear strengths within the range of 22.40% to 105.18% over the strengths of the respective control tests. Conversely, all samples attained maximum shear strengths at 7% bone ash stabilization. The use of bone ash as an additive will therefore improve the shear strength of soils; however, using bone ash quantities in excess of 7% may not yield ample results.
Keywords: Bone ash, Shear strength, Stabilization, Soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557406 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier
Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron
Abstract:
In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820405 Context-aware Recommender Systems using Data Mining Techniques
Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong
Abstract:
This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173404 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage
Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho
Abstract:
Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383403 A Review on Light Shafts Rendering for Indoor Scenes
Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad
Abstract:
Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.
Keywords: Shaft of lights, realistic images, image-based, and geometric-based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610402 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.
Keywords: Deep learning network, smart metering, water end use, water-energy data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362401 EOG Controlled Motorized Wheelchair for Disabled Persons
Authors: A. Naga Rajesh, S. Chandralingam, T. Anjaneyulu, K. Satyanarayana
Abstract:
Assistive robotics are playing a vital role in advancing the quality of life for disable people. There exist wide range of systems that can control and guide autonomous mobile robots. The objective of the control system is to guide an autonomous mobile robot using the movement of eyes by means of EOG signal. The EOG signal is acquired using Ag/AgCl electrodes and this signal is processed by a microcontroller unit to calculate the eye gaze direction. Then according to the guidance control strategy, the control commands of the wheelchair are sent. The classification of different eye movements allows us to generate simple code for controlling the wheelchair. This work was aimed towards developing a usable and low-cost assistive robotic wheel chair system for disabled people. To live more independent life, the system can be used by the handicapped people especially those with only eye-motor coordination.
Keywords: Electrooculography, Microcontroller, Motors, Wheelchair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123400 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323399 A Molding Surface Auto-Inspection System
Authors: Ssu-Han Chen, Der-Baau Perng
Abstract:
Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded,defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.
Keywords: Molding surface, machine vision, statistical texture, discrete Fourier transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744398 Resolving Dependency Ambiguity of Subordinate Clauses using Support Vector Machines
Authors: Sang-Soo Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
In this paper, we propose a method of resolving dependency ambiguities of Korean subordinate clauses based on Support Vector Machines (SVMs). Dependency analysis of clauses is well known to be one of the most difficult tasks in parsing sentences, especially in Korean. In order to solve this problem, we assume that the dependency relation of Korean subordinate clauses is the dependency relation among verb phrase, verb and endings in the clauses. As a result, this problem is represented as a binary classification task. In order to apply SVMs to this problem, we selected two kinds of features: static and dynamic features. The experimental results on STEP2000 corpus show that our system achieves the accuracy of 73.5%.Keywords: Dependency analysis, subordinate clauses, binaryclassification, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596397 An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes
Authors: Lan Yang, Kathryn Cormican, Ming Yu
Abstract:
ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.Keywords: Knowledge management, model-based systems engineering, ontology modelling, systems engineering ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863396 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462395 Fault Classification of a Doubly FED Induction Machine Using Neural Network
Authors: A. Ourici
Abstract:
Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645394 An Efficient Fall Detection Method for Elderly Care System
Authors: S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
Fall detection is one of the challenging problems in elderly care system. The objective of this paper is to identify falls in elderly care system. In this paper, an efficient fall detection method is proposed to identify falls using correlation factor and Motion History Image (MHI). The proposed method is tested on URF (University of Rzeszow Fall detection) dataset and evaluated with some efficient measures like sensitivity, specificity, precision and classification accuracy. It is compared with other recent methods. The experimental results substantially proved that the proposed method achieves 1.5% higher sensitivity when compared to other methods.Keywords: Pearson correlation coefficient, motion history image, human shape identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834393 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies
Authors: Moustafa A. Bani-Hasan, Yasser M. Kadah, Fatma M. El-Hefnawi
Abstract:
An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).Keywords: Arrhythmias analysis, electrocardiogram, featureextraction, statistical classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074392 Entrepreneurial Activity - Indicator of Regional Development in Croatia
Authors: Svjetlana Letinić, Katarina Štavlić
Abstract:
Given that entrepreneurship is a very significant factor of regional development, it is necessary to approach systematically the development with measures of regional politics. According to international classification The Nomenclature of Territorial Units for Statistics (NUTS II), there are three regions in Croatia. The indicators of entrepreneurial activities on the national level of Croatia are analyzed in the paper, taking into consideration the results of referent research. The level of regional development is shown based on the analysis of entrepreneurs- operations. The results of the analysis show a very unfavorable situation in entrepreneurial activities on the national level of Croatia. The origin of this situation is to be found in the surroundings with an expressed inequality of regional development, which is caused by the non-existence of a strategically directed regional policy. In this paper recommendations which could contribute to the reduction of regional inequality in Croatia, have been made.
Keywords: indicators of entrepreneurial activity, regional development, regional inequity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673391 Model Discovery and Validation for the Qsar Problem using Association Rule Mining
Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu
Abstract:
There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787390 Support Vector Machine for Persian Font Recognition
Abstract:
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefacesKeywords: Persian font recognition, support vector machine, gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708389 Feature's Extraction of Human Body Composition in Images by Segmentation Method
Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani
Abstract:
Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.
Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770