Search results for: nonlinear integer programming.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1698

Search results for: nonlinear integer programming.

948 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments

Authors: Sarantos Psycharis

Abstract:

Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.

Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
947 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
946 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
945 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
944 Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method

Authors: M.G.A. Nassef, Linghan Li, C. Schenck, B. Kuhfuss

Abstract:

Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.

Keywords: feed drive systems, least squares algorithm, onlineparameter identification, short time window

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
943 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Authors: R. I. Liban, N. Tayşi

Abstract:

This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.

Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
942 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
941 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
940 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, master curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
939 Genetically Optimized TCSC Controller for Transient Stability Improvement

Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel

Abstract:

This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
938 Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer

Authors: Markus G. Ortner, Christian Magele, Klaus Krischan

Abstract:

Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.

Keywords: Inrush current, magnetic equivalent circuit, nonlinear behavior, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
937 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
936 Application of Computational Intelligence Techniques for Economic Load Dispatch

Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
935 Modeling the Country Selection Decision in Retail Internationalization

Authors: A. Hortacsu, A. Tektas

Abstract:

This paper aims to develop a model that assists the international retailer in selecting the country that maximizes the degree of fit between the retailer-s goals and the country characteristics in his initial internationalization move. A two-stage multi criteria decision model is designed integrating the Analytic Hierarchy Process (AHP) and Goal Programming. Ethical, cultural, geographic and economic proximity are identified as the relevant constructs of the internationalization decision. The constructs are further structured into sub-factors within analytic hierarchy. The model helps the retailer to integrate, rank and weigh a number of hard and soft factors and prioritize the countries accordingly. The model has been implemented on a Turkish luxury goods retailer who was planning to internationalize. Actual entry of the specific retailer in the selected country is a support for the model. Implementation on a single retailer limits the generalizability of the results; however, the emphasis of the paper is on construct identification and model development. The paper enriches the existing literature by proposing a hybrid multi objective decision model which introduces new soft dimensions i.e. perceived distance, ethical proximity, humane orientation to the decision process and facilitates effective decision making.

Keywords: Analytic hierarchy process, culture, ethics, goal programming, retail foreign market selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
934 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
933 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi

Abstract:

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.

Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
932 Measurement Fractional Order Sallen-Key Filters

Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman

Abstract:

This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which is unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples for the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.

Keywords: Analog Filter, Low-Pass Filter, Fractance, Sallen-Key, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142
931 Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2

Authors: Jamal Laaouine, Mohammed Elhassani Charkani

Abstract:

Let p be a prime and let b be an integer. MDS b-symbol codes are a direct generalization of MDS codes. The γ-constacyclic codes of length pˢ over the finite commutative chain ring Fₚm [u]/ < u² > had been classified into four distinct types, where is a nonzero element of the field Fₚm. Let C₃ be a code of Type 3. In this paper, we obtain the b-symbol distance db(C₃) of the code C₃. Using this result, necessary and sufficient conditions under which C₃ is an MDS b-symbol code are given.

Keywords: constacyclic code, repeated-root code, maximum distance separable, MDS codes, b-symbol distance, finite chain rings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
930 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: Hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
929 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
928 Periodic Control of a Wastewater Treatment Process to Improve Productivity

Authors: Muhammad Rizwan Azhar, Emadadeen Ali

Abstract:

In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.

Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
927 Seismic Behavior Evaluation of Semi-Rigid Steel Frames with Knee Bracing by Modal Pushover Analysis (MPA)

Authors: Farzan Namvari, Panam Zarfam

Abstract:

Nowadays use of a new structural bracing system called 'Knee Bracing System' have taken the specialists attention too much. On the other hand nonlinear static analysis procedures in estimate structures performance in earthquake time have taken attention too much. One of these procedure is modal pushover analysis (MPA) procedure. The accuracy of MPA procedure for simple steel moment resisting frame has been verified and considered in Chintanapakdee and Chopra-s article in 2003. Since the accuracy of MPA procedure has not verified for semi-rigid steel frames with knee bracing, we are going to get through with this matter in this study. For this purpose, the selected structures are four frames with different heights, 5 to 20 stories, will be designed according to AISC criteria. Then MPA procedure is used for the same frames with different rigidity percentiles of connections. The results of seismic responses are compared with dynamic nonlinear response history analysis as exact procedure and accuracy of MPA procedure is evaluated. It seems that MPA procedure accuracy will come down by reduction of the rigidity percentiles of semi-rigid connections.

Keywords: Knee Bracing, Modal Pushover Analysis, SeismicBehavior, Semi-Rigid Connections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
926 The Development of Online Lessons in Integration Model

Authors: Chalermpol Tapsai

Abstract:

The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.

Keywords: Integration model, Online lessons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
925 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick S. Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
924 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems

Authors: R. Sharma, M. Gopal

Abstract:

Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.

Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
923 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
922 Relative Injective Modules and Relative Flat Modules

Authors: Jianmin Xing, Rufeng Xing

Abstract:

Let R be a ring, n a fixed nonnegative integer. The concepts of (n, 0)-FI-injective and (n, 0)-FI-flat modules, and then give some characterizations of these modules over left n-coherent rings are introduced . In addition, we investigate the left and right n-FI-resolutions of R-modules by left (right) derived functors Extn(−,−) (Torn(−,−) ) over a left n-coherent ring, where n-FI stands for the categories of all (n, 0)- injective left R-modules. These modules together with the left or right derived functors are used to study the (n, 0)-injective dimensions of modules and rings.

Keywords: (n, 0)-injective module, (n, 0)-injective dimension, (n, 0)-FI-injective(flat) module, (Pre)cover, (Pre)envelope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
921 Maya Semantic Technique: A Mathematical Technique Used to Determine Partial Semantics for Declarative Sentences

Authors: Marcia T. Mitchell

Abstract:

This research uses computational linguistics, an area of study that employs a computer to process natural language, and aims at discerning the patterns that exist in declarative sentences used in technical texts. The approach is mathematical, and the focus is on instructional texts found on web pages. The technique developed by the author and named the MAYA Semantic Technique is used here and organized into four stages. In the first stage, the parts of speech in each sentence are identified. In the second stage, the subject of the sentence is determined. In the third stage, MAYA performs a frequency analysis on the remaining words to determine the verb and its object. In the fourth stage, MAYA does statistical analysis to determine the content of the web page. The advantage of the MAYA Semantic Technique lies in its use of mathematical principles to represent grammatical operations which assist processing and accuracy if performed on unambiguous text. The MAYA Semantic Technique is part of a proposed architecture for an entire web-based intelligent tutoring system. On a sample set of sentences, partial semantics derived using the MAYA Semantic Technique were approximately 80% accurate. The system currently processes technical text in one domain, namely Cµ programming. In this domain all the keywords and programming concepts are known and understood.

Keywords: Natural language understanding, computational linguistics, knowledge representation, linguistic theories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
920 Double Reduction of Ada-ECATNet Representation using Rewriting Logic

Authors: Noura Boudiaf, Allaoua Chaoui

Abstract:

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Keywords: Ada tasking, ECATNets, Algebraic Petri Nets, Compact Representation, Analysis, Rewriting Logic, Maude.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
919 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames

Authors: David A. Roke, M. R. Hasan

Abstract:

Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.

Keywords: Earthquake resistant structures, nonlinear analysis, seismic analysis, self-centering structural systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919