Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2

Authors: Jamal Laaouine, Mohammed Elhassani Charkani

Abstract:

Let p be a prime and let b be an integer. MDS b-symbol codes are a direct generalization of MDS codes. The γ-constacyclic codes of length pˢ over the finite commutative chain ring Fₚm [u]/ < u² > had been classified into four distinct types, where is a nonzero element of the field Fₚm. Let C₃ be a code of Type 3. In this paper, we obtain the b-symbol distance db(C₃) of the code C₃. Using this result, necessary and sufficient conditions under which C₃ is an MDS b-symbol code are given.

Keywords: constacyclic code, repeated-root code, maximum distance separable, MDS codes, b-symbol distance, finite chain rings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428

References:


[1] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2010, pp. 988–992.
[2] Y. Cassuto and S. Litsyn, “Symbol-pair codes: Algebraic constructions and asymptotic bounds,” in Proc. IEEE Int. Symp. Inf. Theory, Jul./Aug. 2011, pp. 2348–2352.
[3] G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, “On repeated-root cyclic codes,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 337–342, Mar. 1991.
[4] B. Chen, L. Lin, and H. Liu, “Constacyclic symbol-pair codes: Lower bounds and optimal constructions,” IEEE Trans. Inf. Theory, vol. 63, no. 12, pp. 7661–7666, Dec. 2017.
[5] B. Ding, G. Ge, J. Zhang, T. Zhang, and Y. Zhang, “New constructions of MDS symbol-pair codes,” Des. Codes Cryptogr., vol. 86, no. 4, pp. 841–859, 2018.
[6] B. Ding, T. Zhang, and G. Ge, “Maximum distance separable codes for b-symbol read channels,” Finite Fields Their Appl., vol. 49, pp. 180–197, Jan. 2018.
[7] H. Q. Dinh, “On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions,” Finite Fields Their Appl., vol. 14, pp. 22–40, 2008.
[8] H. Q. Dinh, “Constacyclic codes of length ps over Fpm + uFpm ,” J. Algebra, vol. 324, no. 5, pp. 940–950, 2010.
[9] H. Q. Dinh, X. Wang, H. Liu, and S. Sriboonchitta, “On the b-distance of repeated-root constacyclic codes of prime power lengths,” Discrete Math., vol. 343, no. 4, Apr. 2020, Art. no. 111780.
[10] H. Q. Dinh, A. Gaur, H. Liu, A. K. Singh, M. K. Singh and W. Yamaka, “b-Symbol Distance of Constacylic Codes of Length ps Over Fpm + uFpm ,” IEEE Access, vol. 8, pp. 67330–67341, 2020.
[11] H. Q. Dinh and S.R. Lopez´-Permouth, “Cyclic and Negacyclic Codes over Finite Chain Rings,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1728–1744, Aug. 2004.
[12] H. Q. Dinh, X. Wang, J. Sirisrisakulchai, “Optimal b-symbol consta-cyclic codes with respect to the Singleton bound,” J. Algebra Appl., vol. 19, no. 2050151, pp. 1–14, 2020.
[13] W. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cam-bridge University Press, Cambridge, 2003.
[14] X. Kai, S. Zhu, and P. Li, “A construction of new MDS symbolpair codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5828–5834, Nov. 2015.
[15] X. Kai, S. Zhu, Y. Zhao, H. Luo, and Z. Chen, “New MDS symbol-pair codes from repeated-root codes,” IEEE Commun. Lett., vol. 22, no. 3, pp. 462–465, Mar. 2018.
[16] J. Laaouine, “On the Hamming and Symbol-Pair distance of constacyclic codes of length ps over R = Fpm + uFpm ,” 2nd International Con-ference on Advanced Communication Systems and Information Security (ACOSIS 2019), accepted for publication.
[17] J. Laaouine, “On MDS symbol-pair γ-constacyclic codes of length ps over Fpm
[u]/ u2 ,” 2nd International Conference on Advanced Com-munication Systems and Information Security (ACOSIS 2019), accepted for publication.
[18] S. Li and G. Ge, “Constructions of maximum distance separable sym-bolpair codes using cyclic and constacyclic codes,” Des. Codes Cryptogr., vol. 84, no. 3, pp. 359–372, 2017.
[19] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, 10th Impression, North-Holland, Amsterdam, 1998.
[20] V. Pless, W.C. Huffman, Handbook of Coding Theory, Elsevier, Ams-terdam, The Netherlands, 1998.
[21] J. H. van Lint, “Repeated-root cyclic codes,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 343–345, Mar. 1991.
[22] E. Yaakobi, J. Bruck, and P. H. Siegel, “Constructions and decoding of cyclic codes over b-symbol read channels,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp.1541–1551, Apr. 2016.