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Abstract—Let p be a prime and let b be an integer. MDS b-
symbol codes are a direct generalization of MDS codes. The γ-
constacyclic codes of length ps over the finite commutative chain ring
Fpm [u]/〈u2〉 had been classified into four distinct types, where γ
is a nonzero element of the field Fpm . Let C3 be a code of Type 3.
In this paper, we obtain the b-symbol distance db(C3) of the code
C3. Using this result, necessary and sufficient conditions under which
C3 is a MDS b-symbol code are given.
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symbol distance, finite chain rings.

I. INTRODUCTION

IN information theory, at the beginning, the message com-
municated in a noisy channel was divided into information

units, which are called symbols. The operations of reading
and writing are often presumed to be performed on individual
symbols, which created a lot of disruptions. However, by the
recent development of emerging technologies, the symbols can
only be written and read in possibly overlapping groups. In
2010, Cassuto and Blaum [1] were the first to propose this
method in which the outputs of the channel is overlapping
pair of symbols. They provided constructions and decoding
methods of symbol-pair codes. In 2011, by using algebraic
methods, Cassuto and Litsyn [2] constructed cyclic symbol-
pair codes, and showed that there exist symbol-pair codes with
rates strictly higher than such codes in the Hamming metric
with the same relative distance. Later, Kai et al. [14] developed
the theory given by Cassuto and Litsyn [2, Th. 10] for simple-
root constacyclic codes. After that, the results established
for symbol-pair read channels were further generalized to b-
symbol read channels, where the read operation is performed
as a consecutive sequence of b ≥ 3 by Yaakobi et al. [22].

One of the principal problems in error correction is to
construct codes with the best possible distance. Maximum dis-
tance separable (MDS) code has the largest Hamming distance,
i.e., they have the best possible error-correction capability. In
recent years, many researchers want to construct MDS symbol-
pair codes (see, for example [4], [5], [6], [12], [14], [15], [16],
[17], [18]). As a generalization of MDS codes and MDS symbol-
pair codes, MDS b-symbol codes are a kind of b-symbol codes.
Hence, constructing MDS b-symbol codes are always one of the
central topics in coding theory.
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In engineering, constacyclic codes are most preferred be-
cause of their rich algebraic structures and they can be
methodically encoded using shift registers. This family of
codes are a direct generalization of cyclic codes and perform
a crucial role in the theory of error-correcting codes. For a
unit element γ in a commutative ring R, γ-constacyclic codes
of a given length n over R are in correspondence with ideals
in the polynomial ring R[x]/〈xn − γ〉. Thus the study of γ-
constacyclic codes of length n over R is equivalent to the study
of ideals of the quotient ring R[x]/〈xn − γ〉. When the code
length n is divisible by the characteristic p of the residue feld
R, the constacyclic codes are called repeated-root constacyclic
codes. Otherwise, the constacyclic codes are called single-root
constacyclic codes. Repeated-root constacyclic codes were
first initiated in the most generality by Castagnoli in [3] and
Van Lint in [21]. Let γ be a nonzero element of the field Fpm .
All γ-constacyclic code of length ps over R = Fpm+uFpm are
classified into 4 distinct types and their detailed structures are
also established in [8]. Let C3 = 〈(x−γ0)

δ+u(x−γ0)
th(x)〉

be of Type 3, as in [8], where h(x) is a unit, 0 ≤ t < δ, and
1 ≤ δ ≤ ps − 1.

In [9], Dinh et al. computed the b-distances over Fpm of
repeated root constacyclic codes of prime power lengths for
1 ≤ b ≤ �p

2�, where �p
2� denotes the largest integer, which is

less than or equal to p
2 . As an application, they also determined

all MDS b-symbol codes within this class of codes. These works
motivate us to study b-symbol distance db(C3) of the code C3
for 1 ≤ b ≤ �p

2�. As an application, necessary and sufficient
conditions under which C3 is a MDS b-symbol code are given.

The remainder of this paper is organized as follows. Some
preliminary results are discussed in Section 2. In Section 3,
b-distance db(C3) of the code C3 is established. In Section 4,
we derive necessary and sufficient conditions under which C3
is a MDS b-symbol code. Section 5 concludes the paper.

II. SOME PRELIMINARIES

All rings are commutative rings with identity. A ring R
is called principal ideal ring if its ideals are parincipal. R is
called a local ring if R has a unique maximal ideal (consisting
of all the non-units of R). Finally, R is called a chain ring if
all the ideals of R form a chain with respect to the inclusion
relation.

The following equivalent conditions are well-known for the
class of finite commutative chain rings (see [11, Proposi-
tion 2.1]).

Proposition 1: If R is a finite commutative ring, then the
following conditions are equivalent:
(i) R is a local ring and the maximal ideal of R is principal,
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(ii) R is a local principal ideal ring,
(iii) R is a chain ring.

If we denote by 〈a〉 the maximal ideal of the finite chain
ring R, then a is nilpotent with nilpotency index some integer
e and the ideal of R from the following chain:

〈0〉 = 〈ae〉 � 〈ae−1〉 � · · · � 〈a〉 � 〈a0〉 = R

Furthermore, we have |〈ai〉| = |R/〈a〉|e−i for 0 ≤ i ≤ e.
(Throughout this paper, |A| denotes the cardinality of the set
A.)

Let R be a finite ring and let n be a positive integer. A
code C of length n over R is a nonempty subset of Rn. If
this subset is also an R-submodule of Rn, then C is called
linear. For a unit γ of R, a code C of length n over R is
said to be γ-constacyclic if (c0, c1, . . . , cn−1) ∈ C implies
that (γcn−1, c0, . . . , cn−2) ∈ C. In the case γ = 1, those γ-
constacyclic codes are called cyclic codes, and when γ = −1,
such γ-constacyclic codes are called negacyclic codes. The
following is a well known fact about γ-constacyclic codes.

Proposition 2 (cf. [13], [19], [20]): A linear code C of
length n is γ-constacyclic over R if and only if C is an ideal
of R[x]/〈xn − γ〉.

Now let us consider the code alphabet Σ with q elements,
whose elements are called symbols. In b-symbol read chan-
nels, a codeword x = (x0, x1, . . . , xn−1) in Σn is represented
as (see [6])

πb(x) = [(x0, x1, . . . , xb−1), (x1, x2, . . . , xb), . . . ,

(xn−1, x0, . . . , xb−2)] ∈ (Σb)n,

where b ≥ 1. Define the b-weight of a vector x as

wb(x) = |{0 ≤ i ≤ n− 1 : (xi, . . . , xi+b−1) 	= (0, . . . , 0)}|,
where the subscripts are taken modulo n. For two vectors
x, y ∈ Σn, the b-distance between x and y is defined as

db(x,y) = |{i : (xi, . . . , xi+b−1) 	= (yi, . . . , yi+b−1)}|,
where the subscripts are reduced modulo n. The minimum
b-distance of a b-symbol code C is defined as

db(C) = min{db(x,y) | x,y ∈ C,x 	= y}.
If C is a linear b-symbol code, its b-distance is equal to the
minimum b-weight of nonzero codewords of C:

db(C) = min{wtb(x) | 0 	= x ∈ C}.
When b = 1 and b = 2, the b-distance is the Hamming
distance and the symbol-pair distance, respectively.

In this paper, let Fpm be a finite field of pm elements, where
p is a prime number, and denote

R = Fpm + uFpm (u2 = 0).

The ring R is a finite commutative ring with p2m elements,
and can be expressed as R = Fpm [u]/〈u2〉 = {a+ bu | a, b ∈
Fpm}. It is easy to check that R is a local ring with maximal
ideal 〈u〉 = uFpm . Therefore, by propsition 1, it is a chain
ring. The ring R has precisely pm(pm − 1) units and every
invertible element in R is of the form: a+bu where a, b ∈ Fpm

and a 	= 0.

Throughout this paper, we always assume that b is a positive
integer with 1 ≤ b ≤ �p

2�. For any invertible element
γ of Fpm , γ-constacyclic codes of length ps over a finite
field Fpm are precisely the ideals of the finite chain ring
Fpm [x]/〈xps − γ〉. Since γ is a nonzero element of the field
Fpm , there exists γ0 ∈ Fpm such that γps

0 = γ.
In [7], [9] the algebraic structure and b-distance of γ-

constacyclic codes of length ps over Fpm were established
and given by the following theorem.

Theorem 1 (cf. [9]): Let 1 ≤ b ≤ �p
2� and 1 ≤ β ≤ p− 1.

Let C be a γ-constacyclic code of length ps over Fpm . Then
C = 〈(x − γ0)

i〉 ⊆ Fpm [x]/〈xps − γ〉, for i ∈ {0, 1, . . . , ps},
and its b-distance db(C) is completely determined by:

db(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b, if i = 0;
(β + b)(α + 1)pk, if

i = ps − pr + αr + β,
where r = ps−k−1, 0 ≤ k ≤ s− 2,

0 ≤ α ≤ p− 2, β(α+ 1) ≤ b,
and β + b ≤ p;

b(α + 2)pk, if
ps − pr + αr + β ≤ i ≤ ps − pr + (α+ 1)r,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) > b,

or β + b > p;
(ζ + b)ps−1, if i = ps − p+ ζ,

where 0 ≤ ζ ≤ p− b;
ps, if ps − b+ 1 ≤ i ≤ ps − 1;
0, if i = ps.

III. b-SYMBOL DISTANCE

Let γ be a nonzero element of the field Fpm . γ-constacyclic
code of length ps over R are precisely the ideals of the local
ring

Rγ = R[x]/〈xps − γ〉.
In 2010, Dinh [8] classified all γ-constacyclic code of length
ps over R into 4 distinct types, and their detailed structures are
also obtained. Let C3 be of Type 3 (principal ideals with monic
polynomial generators), i.e., C3 = 〈(x−γ0)

δ+u(x−γ0)
th(x)〉,

where 1 ≤ T ≤ δ ≤ ps − 1, 0 ≤ t < δ, and either h(x) is 0
or a unit in Fpm [x]/〈xps − γ〉, deg h(x) ≤ T − t − 1, and T
is the smallest integer satisfying u(x− γ0)

T ∈ C3, i.e.,

T =

{
δ, if h(x) = 0,
min{δ, ps − δ + t}, if h(x) �= 0.

Moreover, we have

|C3| = pm(2ps−δ−T).

Note that Fpm is a subring of R, for a code C over R, we
denote db(CF) as the b-symbol distance of C|Fpm

.
In [10, Theorem 3.3(Type 3)], Dinh et al. stated that:

db(C3) = db(〈(x − γ0)
δ〉F). Unfortunately, this result is not

true in general, which we illustrate in the following example.
Example 1: Let R = F11m + uF11m , where u2 = 0, and

taking b = 4. Consider the γ-constacyclic code C3 = 〈(x −
γ0)

9 + u(x− γ0)h(x)〉 of length 11 over R, where h(x) 	= 0.
Here p = 11, s = 1, δ = 9 and t = 1. Then T = 3,
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which gives 〈u(x − γ0)
3〉 ⊆ C3. This implies that d4(〈u(x −

γ0)
3〉) = d4(〈(x− γ0)

3〉F) ≥ d4(C3). By Theorem 1, we have
d4(〈(x− γ0)

3〉F) = 7, which implies that

d4(C3) ≤ 7. (1)

By using Theorem 1 again, we see that

d4(〈(x− γ0)
9〉F) = 11. (2)

Now by (1) and (2), we see that d4(C3) 	= d4(〈(x − γ0)
9〉F).

This example shows that [10, Theorem 3.3(Type 3)] is incor-
rect.

In the following theorem, we shall rectify the error in
Theorem 3.3 (Type 3) of Dinh et al. [10].

Theorem 2: Let C3 be a γ-constacyclic codes of length ps

over R of Type 3, i.e., C3 = 〈(x − γ0)
δ + u(x − γ0)

th(x)〉,
where 1 ≤ T ≤ δ ≤ ps − 1, 0 ≤ t < δ, either h(x) is 0 or
h(x) is a unit, and

T =

{
δ, if h(x) = 0,
min{δ, ps − δ + t}, if h(x) �= 0.

Then the b-symbol distance db(C3) of the code C3 is given by

db(C3) = db(〈(x− γ0)
T〉F)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β + b)(α + 1)pk, if
T = ps − pr + αr + β,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) ≤ b,

and β + b ≤ p;
b(α + 2)pk, if
ps − pr + αr + β ≤ T ≤ ps − pr + (α+ 1)r,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) > b,

or β + b > p;
(ζ + b)ps−1, if T = ps − p+ ζ,

where 0 ≤ ζ ≤ p− b;
ps, if ps − b+ 1 ≤ T ≤ ps − 1.

Proof: In order to determine db(C3), we first observe that

wtb(a(x) + ub(x)) ≥ wtb(a(x)), (3)

where a(x), b(x) ∈ Fpm [x]/〈xps − γ〉.
Note that T is the smallest integer such that u(x−γ0)

T ∈ C3,
which implies that

db(〈(x− γ0)
T〉F) = db(〈u(x− γ0)

T〉) ≥ db(C3) (4)

On the other hand to prove that db(C3) ≥ db(〈(x−γ0)
T〉F),

we consider an arbitrary nonzero element c(x) ∈ C3, that
means there exist ϕ(x), ψ(x) ∈ Fpm [x] such that

c(x) = [ϕ(x) + uψ(x)][(x− γ0)
δ + u(x− γ0)

th(x)].

Now we shall distinguish the following two cases.
Case 1 : ϕ(x) = 0. In this case, ψ(x) 	= 0. We have

c(x) = uψ(x)(x− γ0)
δ . Thus

wtb(c(x)) = wtb(uψ(x)(x− γ0)
δ)

≥ db(〈u(x− γ0)
δ〉) = db(〈(x− γ0)

δ〉F).
Since, 〈(x− γ0)

δ〉 ⊆ 〈(x− γ0)
T〉, we have

db(〈(x− γ0)
δ〉F) ≥ db(〈(x− γ0)

T〉F).

Case 2 : ϕ(x) 	= 0. Then we have

c(x) = ϕ(x)(x−γ0)
δ+u[ψ(x)(x−γ0)

δ+ϕ(x)(x−γ0)
th(x)].

By (3), we obtain that

wtb(c(x)) ≥ wtb(ϕ(x)(x− γ0)
δ)

≥ db(〈(x− γ0)
δ〉F)

≥ db(〈(x− γ0)
T〉F).

From this, we get wtb(c(x)) ≥ db(〈(x−γ0)
T〉F) for each c(x)

nonzero element of C3. This implies that

db(C3) ≥ db(〈(x− γ0)
T〉F) (5)

Now by (4) and (5) , we get

db(C3) = db(〈(x− γ0)
T〉F).

The rest of the proof follows from Theorem 1 and the
discussion above.

It is easy to observe that T = δ when h(x) = 0 or h(x) 	= 0
and 1 ≤ δ ≤ ps+t

2 , and that T = ps − δ + t when h(x) 	= 0

and ps+t
2 < δ ≤ ps − 1.

Corollary 1: Under the same notations as in Theorem 2,
we have the following results:

a) If h(x) is 0 or h(x) is a unit and 1 ≤ δ ≤ ps+t
2 , then

db(C3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β + b)(α + 1)pk, if
δ = ps − pr + αr + β,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) ≤ b,

and β + b ≤ p;
b(α + 2)pk, if
ps − pr + αr + β ≤ δ ≤ ps − pr + (α+ 1)r,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) > b,

or β + b > p;
(ζ + b)ps−1, if δ = ps − p+ ζ,

where 0 ≤ ζ ≤ p− b;
ps, if ps − b+ 1 ≤ δ ≤ ps − 1.

b) If h(x) is a unit and ps+t
2 < δ ≤ ps − 1, then

db(C3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β + b)(α + 1)pk, if
δ = t+ ps−k − αps−k−1 − β,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) ≤ b,

and β + b ≤ p;
b(α + 2)pk, if
t+ pr − (α+ 1)r ≤ δ ≤ t+ pr − αr − β,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) > b,

or β + b > p;
(ζ + b)ps−1, if δ = t+ p− ζ,

where 0 ≤ ζ ≤ p− b;
ps, if t+ 1 ≤ δ ≤ t+ b− 1.

Example 2: γ-constacyclic codes of length 5 over the chain
ring R = F5+uF5 are precisely the ideals of R[x]/〈x5 − γ〉,
where γ ∈ {1, 2, 3, 4}. The following Table I gives all γ-
constacyclic codes of length 5 over the chain ring F5 + uF5

of Type 3, where h(x) is a unit, 0 ≤ t < δ and 5+t
2 < δ ≤ 4,
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TABLE I
γ-CONSTACYCLIC CODES OF LENGTH 5 OVER THE CHAIN RING F5 + uF5

OF Type 3 (h(x) IS A UNIT, 0 ≤ t < δ AND 5+t
2

< δ ≤ 4)

Ideal N dH dsp
→ δ = 3 and t = 0:
〈(x − γ)3 + h0u + h1u(x − γ)〉 20 3 4
→ δ = 4 and t = 0:
〈(x − γ)4 + h0u〉 4 2 3
→ δ = 4 and t = 1:
〈(x − γ)4 + h0u(x − γ)〉 4 3 4
→ δ = 4 and t = 2:
〈(x − γ)4 + h0u(x − γ)2〉 4 4 5

together with their number N, their Hamming distances dH
and their symbol-pair distances dsp. In all codes we have h0 ∈
{1, 2, 3, 4} and h1 ∈ {0, 1, 2, 3, 4}.

Remark 1: Let C4 be a γ-constacyclic code of Type 4 (non
principal ideals) as in [8]:

Here, we have C4 = 〈(x−γ0)
δ+u(x−γ0)

th(x), u(x−γ0)
κ〉,

with h(x) as in Type 3, deg(h(x)) ≤ κ− t− 1, 0 ≤ κ < δ ≤
ps − 1 (κ 	= ps − 1) and 0 ≤ t < κ.

It is easy to see that u ∈ C4 when κ = 0. This means that
db(C4) = b. Then the b-symbol distance db(C4) of the code
C4 is given by

db(C4) = db(〈(x− γ0)
κ〉F)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b, if κ = 0;
(β + b)(α + 1)pk, if

κ = ps − pr + αr + β,
where r = ps−k−1, 0 ≤ k ≤ s− 2,

0 ≤ α ≤ p− 2, β(α+ 1) ≤ b,
and β + b ≤ p;

b(α + 2)pk, if
ps − pr + αr + β ≤ κ ≤ ps − pr + (α+ 1)r,

where r = ps−k−1, 0 ≤ k ≤ s− 2,
0 ≤ α ≤ p− 2, β(α+ 1) > b,

or β + b > p;
(ζ + b)ps−1, if κ = ps − p+ ζ,

where 0 ≤ ζ ≤ p− b;
ps, if ps − b+ 1 ≤ κ ≤ ps − 2.

IV. MDS b-SYMBOL CONSTACYCLIC CODES OF LENGTH ps

OVER R
To get MDS b-symbol codes, we need to determine the

singleton bound for b-symbol codes first. Singleton bound for
b-symbol code C of length n over a finite commutative ring
R with b-distance db(C) is as follows: |C| ≤ |R|(n−db(C)+b)

(see [6]). A b-symbol code C is called an MDS b-symbol codes
if it attains the singleton bound for b-symbol codes, i.e.,

|C| = |R|(n−db(C)+b). (6)

Let C = 〈(x− γ0)
i〉 be a γ-constacyclic code of length ps

over Fpm , where 0 ≤ i ≤ ps. It is well known that |C| =
pm(ps−i). So the dimension of code C is ps − i. By (6), C is
an MDS b-symbol code if and only if ps− i = ps−dsp(C)+b,
i.e., i = dsp(C) − b. In [9], Dinh et al. identifed all the MDS

b-symbol constacyclic codes of length ps over Fpm .
Theorem 3 (cf. [9]): Let C = 〈(x − γ0)

i〉 be a γ-
constacyclic code of length ps over Fpm , for i ∈

{0, 1, . . . , ps}. Then C is an MDS b-symbol constacyclic code
if and only if one of the following conditions holds:

• If s = 1, then δ = η for 1 ≤ η ≤ p − b, in such case,
db(C) = η + b.

• If s ≥ 2, then

∗ δ = σ for 0 ≤ σ ≤ b, in such case, db(C) = σ + b.
∗ δ = ps − b, db(C) = ps.

Now, let C3 = 〈(x − γ0)
δ + u(x − γ0)

th(x)〉 be a γ-
constacyclic codes of length ps over R of Type 3, where
h(x) 	= 0, 1 ≤ δ ≤ ps − 1 and 0 ≤ t < δ. In this section, we
shall determine necessary and sufficient conditions for C3 to
be MDS b-symbol code. For this, the following two cases arise.

Case 1: When 1 ≤ δ ≤ ps+t
2

then, |C3| = p2m(ps−δ). By
applying (6), we see that the code C3 is a MDS b-symbol code
if and only if ps − δ = ps − db(C3) + b, i.e., δ = db(C3)− b,
which is the same as the MDS γ-constacyclic b-symbol codes
over Fpm (see Theorem 3). But we have 1 ≤ δ ≤ ps+t

2 and
0 ≤ t < δ, which gives max{2δ − ps, 0} ≤ t < δ. From this,
we can conclude the following theorem:

Theorem 4: Let C3 = 〈(x − γ0)
δ + u(x − γ0)

th(x)〉 be of
Type 3, where h(x) 	= 0, 0 ≤ t < δ and 1 ≤ δ ≤ ps+t

2 , then
C3 is a MDS b-symbol code if and only if one of the following
conditions holds:

• If s = 1, then δ = η, 1 ≤ η ≤ p− b, max{2η − p, 0} ≤
t ≤ η − 1, then db(C3) = η + b.

• If s ≥ 2, then

∗ δ = σ, 1 ≤ σ ≤ b, 0 ≤ t ≤ σ − 1, db(C3) = σ + b,
∗ δ = ps − b, ps − 2b ≤ t ≤ ps − b− 1, db(C3) = ps.

Remark 2: Let C3 = 〈(x− γ0)
δ + u(x− γ0)

th(x)〉, where
h(x) is a unit, 0 ≤ t < δ and 1 ≤ δ ≤ ps−1 + � t

2�. Thus by
(6), C3 is a b-symbol MDS code if and only if δ = db(C3)− b.
In [10, Theorem 4.4], Dinh et al. stated that: When s ≥ 2,
then δ ≥ 2. Unfortunately, this result is not true. For example,
taking b = 4, s = 4, p = 11 and δ = 1, then t = 0. By
using Corollary 1(a), we see that db(C3) = 5, which gives
db(C3) − b = 5 − 4 = 1 = δ. This implies that C3 is a MDS

b-symbol code. This example shows that [10, Theorem 4.4] is
incomplete.

Case 2: When ps+t
2

< δ ≤ ps − 1. In this case, |C3| =
pm(ps−t). Thus by (6), C3 is a b-symbol MDS code if and only
if ps − t = 2(ps − db(C3) + b), i.e., t = 2db(C3) − ps − 2b.
Hence, we have the following theorem.

Theorem 5: Let C3 = 〈(x − γ0)
δ + u(x − γ0)

th(x)〉 be of
Type 3, where h(x) 	= 0, 0 ≤ t < δ and ps+t

2 < δ ≤ ps − 1.
Then C3 is not a MDS b-symbol constacyclic code.

Proof: When ps+t
2 < δ ≤ ps − 1, i.e., 2δ > ps + t,

MDS codes can be obtained when t = 2db(C3) − ps − 2b.
The b-distance db(C3) is determined in Corollary 1(b). In the
following, we discuss the case when t = 2db(C3) − ps − 2b
and 2δ > ps + t.

Case 1 : δ = t + ps−k − αps−k−1 − β, where 0 ≤ k ≤
s − 2, 0 ≤ α ≤ p − 2, β(α + 1) ≤ b and β + b ≤ p. Then
db(C3) = (β+b)(α+1)pk, and 2δ = 2t+2ps−k−2αps−k−1−

616International Scholarly and Scientific Research & Innovation 15(11) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
11

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
32

7.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:11, 2021

2β > ps + t. Hence,

t > ps − 2ps−k + 2αps−k−1 + 2β

= 2ps−k(pk − 1)− ps + 2αps−k−1 + 2β

≥ 2p2(pk − 1)− ps + 2αp+ 2β

≥ 2p(α+ 2)(pk − 1)− ps + 2αp+ 2β

= 2p(α+ 1)pk − ps + 2pk+1 − 4p+ 2β

≥ 2(β + b)(α+ 1)pk − ps + 2β

> 2(β + b)(α+ 1)pk − ps − 2b

= 2db(C3)− ps − 2b.

Since, t > 2db(C3)− ps − 2b, no MDS b-symbol constacyclic
code can be obtained in this case.

Case 2 : t+ ps−k − (α+1)ps−k−1 ≤ δ ≤ t+ ps−k −
αps−k−1 − β, where 0 ≤ k ≤ s− 2, 0 ≤ α ≤ p− 2, β(α+
1) > b, or β + b > p. So db(C3) = b(α+ 2)pk. We consider
δ = t + ps−k − αps−k−1 − j, where β ≤ j ≤ ps−k−1. Then
2δ = 2t+ 2ps−k − 2αps−k−1 − 2j > ps + t. Hence,

t > ps − 2ps−k + 2αps−k−1 + 2j

= 2ps−k(pk − 1)− ps + 2αps−k−1 + 2j

≥ 2p2(pk − 1)− ps + 2αp+ 2β

≥ 2p(α+ 2)(pk − 1)− ps + 2αp+ 2β

= p(α+ 2)pk + αpk+1 + 2pk+1 − 2p− ps + 2(β − p)

> 2b(α+ 2)pk − ps − 2b

= 2db(C3)− ps − 2b.

Since, t > 2db(C3)− ps − 2b, no MDS b-symbol constacyclic
code exists in this case.

Case 3 : δ = t + p − ζ, where 0 ≤ ζ ≤ p − b. Then
db(C3) = (ζ + b)ps−1, and 2δ = 2t + 2p − 2ζ > ps + t.
Hence,

t > ps − 2p+ 2ζ

= 2p(ps−1 − 1)− ps + 2ζ

≥ 2(ζ + b)(ps−1 − 1)− ps + 2ζ

= 2(ζ + b)ps−1 − ps − 2b

= 2db(C3)− ps − 2b.

Since, t > 2db(C3)− ps − 2b, no MDS b-symbol constacyclic
code exists in this case.

Case 4 : t + 1 ≤ δ ≤ t + b − 1. So db(C3) = ps. We
consider δ = t + b − j, where 1 ≤ j ≤ b − 1. Then 2δ =
2t+ 2b− 2j > ps + t. Hence,

t > ps − 2b+ 2j

= 2ps − ps − 2b+ 2j

> 2ps − ps − 2b

= 2db(C3)− ps − 2b.

Since, t > 2db(C3)− ps − 2b, no MDS b-symbol constacyclic
code exists in this case. This completes the proof.

Remark 3: Let C3 = 〈(x− γ0)
δ + u(x− γ0)

th(x)〉, where
h(x) is a unit, 0 ≤ t < δ and ps−1 + � t

2� < δ ≤ ps − 1.
Then by (6), C3 is a MDS b-symbol code if and only if t =

2db(C3)−ps−2b. In [10, Theorem 4.5], Dinh et al. stated that:
When s ≥ 1, ps − b+ 1 ≤ δ ≤ ps − 1 and t = ps − 2b. Then
C3 is a MDS b-symbol code. Unfortunately, this result is not
true. For example, taking b = 5, s = 2, p = 11, δ = 118 and
t = 111. By Corollary 1(b), we see that db(C3) = 99, which
gives 2db(C3)− ps − 2b = 198− 121− 10 = 67 	= t = 111.
This implies that C3 is not a MDS b-symbol code. This example
shows that [10, Theorem 4.5] is incorrect.

We conclude this section by some examples of MDS b-
symbol constacyclic codes.

Example 3: γ-constacyclic codes of length 7 over the chain
ring R = F7+uF7 are precisely the ideals of R[x]/〈x7 − γ〉,
where γ ∈ {1, 2, 3, 4, 5, 6}. Let C3 = 〈(x − γ)δ + u(x −
γ)th(x)〉 be of Type 3, where h(x) is a unit, 1 ≤ δ ≤ 6 and
0 ≤ t < δ. We consider b = 3. We have the following list of
MDS 3-symbol γ-constacyclic codes.

• When 1 ≤ δ ≤ 7+t
2 , MDS codes are obtained by the

condition δ = d3(C3) − 3 and all the distinct MDS codes
are given by:
◦ 〈(x− γ) + h0u〉,
◦ 〈(x− γ)2 + h0u+ h1u(x− γ)〉,
◦ 〈(x− γ)2 + h0u(x− γ)〉,
◦ 〈(x− γ)3 + h0u+ h1u(x− γ) + h2u(x− γ)2〉,
◦ 〈(x− γ)3 + h0u(x− γ) + h1u(x− γ)2〉,
◦ 〈(x− γ)3 + h0u(x− γ)2〉,
◦ 〈(x−γ)4+h0u(x−γ)+h1u(x−γ)2+h2u(x−γ)3〉,
◦ 〈(x− γ)4 + h0u(x− γ)2 + h1u(x− γ)2〉,
◦ 〈(x− γ)4 + h0u(x− γ)3〉,

where h0 ∈ {1, . . . , 6}, h1, h2 ∈ {0, 1, . . . , 6}.
• When 7+t

2 < δ ≤ 6, the MDS code condition is t =
2d3(C3) − 13, which is not satisfied by any value of t
and d3(C3). Thus, no MDS code is obtained in this case.

Example 4: γ-constacyclic codes of length 121 over the
chain ring R = F11 + uF11 are precisely the ideals of
R[x]/〈x121 − γ〉, where γ ∈ {1, 2, . . . , 10}. Let C3 = 〈(x −
γ)δ + u(x − γ)th(x)〉 be of Type 3, where h(x) is a unit,
1 ≤ δ ≤ 120 and 0 ≤ t < δ. Let b = 4. We have the
following list of MDS 4-symbol γ-constacyclic codes.

• When 1 ≤ δ ≤ 121+t
2 , MDS codes are obtained by the

condition δ = d4(C3) − 4 and all the distinct MDS codes
are given by:
◦ 〈(x− γ) + h0u〉,
◦ 〈(x− γ)2 + h0u+ h1u(x− γ)〉,
◦ 〈(x− γ)2 + h0u(x− γ)〉,
◦ 〈(x− γ)3 + h0u+ h1u(x− γ) + h2u(x− γ)2〉,
◦ 〈(x− γ)3 + h0u(x− γ) + h1u(x− γ)2〉,
◦ 〈(x− γ)3 + h0u(x− γ)2〉,
◦ 〈(x−γ)4+h0u+h1u(x−γ)+h2u(x−γ)2+h3u(x−

γ)3〉,
◦ 〈(x−γ)4+h0u(x−γ)+h1u(x−γ)2+h2u(x−γ)3〉,
◦ 〈(x− γ)4 + h0u(x− γ)2 + h1u(x− γ)3〉,
◦ 〈(x− γ)4 + h0u(x− γ)3〉,
◦ 〈(x−γ)117+h0u(x−γ)113+h1u(x−γ)114+h2u(x−

γ)115 + h3u(x− γ)116〉,
◦ 〈(x−γ)117+h0u(x−γ)114+h1u(x−γ)115+h2u(x−

γ)116〉,
◦ 〈(x− γ)117 + h0u(x− γ)115 + h1u(x− γ)116〉,
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◦ 〈(x− γ)117 + h0u(x− γ)116〉,
where h0 ∈ {1, . . . , 10}, h1, h2, h3 ∈ {0, 1, . . . , 10}.

• When 121+t
2 < δ ≤ 120, the MDS code condition is t =

2d4(C3) − 129, which is not satisfied by any value of t
and d4(C3). Thus, no MDS code is obtained in this case.

V. CONCLUSION

Let p be a prime and γ be an any nonzero element of the
finite field Fpm . Determining the b-distances of constacyclic
codes and obtaining MDS b-symbol constacyclic codes are very
important in coding theory. Motivated by this, in this paper, we
studied the b-distances of γ-constacyclic codes of length ps

over R = Fpm [u]/〈u2〉 for 1 ≤ b ≤ �p
2�. We also completed

the problem of determination MDS b-symbol γ-constacyclic
codes of length ps over R.
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