Search results for: genetic optimization.
1576 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.
Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741575 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers
Authors: Hassan M. Elragal
Abstract:
This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiersKeywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431574 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: Channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy flight distribution, optimization, improved multi–objective Firefly algorithms, Pareto optimal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11571573 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14401572 Optimal Capacitor Placement in Distribution Feeders
Authors: N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24211571 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks
Authors: Moslem Afrashteh Mehr
Abstract:
Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlabKeywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28831570 Optimization of Transfer Pricing in a Recession with Reflection on Croatian Situation
Authors: Jasminka Radolović
Abstract:
Countries in recession, among them Croatia, have lower tax revenues as a result of unfavorable economic situation, which is decrease of the economic activities and unemployment. The global tax base has decreased. In order to create larger state revenues, states use the institute of tax authorities. By controlling transfer pricing in the international companies and using certain techniques, tax authorities can create greater tax obligations for the companies in a short period of time.Keywords: Documentation, Methods, Tax Optimization, Transfer Pricing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901569 Predicting Dispersion Coefficient in Free-Flowing Zones of Rivers by Genetic Programming
Authors: Rajeev Ranjan Sahay
Abstract:
Transient storage zones along the flow paths of rivers have great influence on the dispersion of pollutants that are either accidentally or otherwise led into them. The speed with which these pollution clouds get transported and dispersed downstream is, to a large extent, explained by the longitudinal dispersion coefficients in the free-flowing zones of rivers (Kf). In the present work, a new empirical expression for Kf has been derived employing genetic programming (GP) on published dispersion data. The proposed expression uses few hydraulic and geometric characteristics of a river that are readily available to field engineers. Based on various performance indices, the proposed expression is found superior to other existing expression for Kf.
Keywords: Dispersion, parameter estimation, rivers, transient pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201568 Quantum Computing: A New Era of Computing
Authors: Jyoti Chaturvedi Gursaran
Abstract:
Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.
Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26611567 Reducing Variation of Dyeing Process in Textile Manufacturing Industry
Abstract:
This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35541566 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.
Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7471565 A New Controlling Parameter in Design of Above Knee Prosthesis
Abstract:
In this paper after reviewing some previous studies, in order to optimize the above knee prosthesis, beside the inertial properties a new controlling parameter is informed. This controlling parameter makes the prosthesis able to act as a multi behavior system when the amputee is opposing to different environments. This active prosthesis with the new controlling parameter can simplify the control of prosthesis and reduce the rate of energy consumption in comparison to recently presented similar prosthesis “Agonistantagonist active knee prosthesis". In this paper three models are generated, a passive, an active, and an optimized active prosthesis. Second order Taylor series is the numerical method in solution of the models equations and the optimization procedure is genetic algorithm. Modeling the prosthesis which comprises this new controlling parameter (SEP) during the swing phase represents acceptable results in comparison to natural behavior of shank. Reported results in this paper represent 3.3 degrees as the maximum deviation of models shank angle from the natural pattern. The natural gait pattern belongs to walking at the speed of 81 m/min.Keywords: Above knee prosthesis, active controlling parameter, ballistic motion, swing phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18711564 Optimization of PEM Fuel Cell Biphasic Model
Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi
Abstract:
The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.
Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291563 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems
Authors: V. Tawiwat, T. Amornthep, P. Pnop
Abstract:
Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.Keywords: Optimization, Dynamic, Linear Systems, Jerks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13331562 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines
Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan
Abstract:
This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.
Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651561 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women
Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková
Abstract:
Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.
Keywords: OPG gene, osteoporosis, Real-time PCR, T245G polymorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271560 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271559 Canonical PSO based Nanorobot Control for Blood Vessel Repair
Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong
Abstract:
As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.
Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26861558 The Effect of Increment in Simulation Samples on a Combined Selection Procedure
Authors: Mohammad H. Almomani, Rosmanjawati Abdul Rahman
Abstract:
Statistical selection procedures are used to select the best simulated system from a finite set of alternatives. In this paper, we present a procedure that can be used to select the best system when the number of alternatives is large. The proposed procedure consists a combination between Ranking and Selection, and Ordinal Optimization procedures. In order to improve the performance of Ordinal Optimization, Optimal Computing Budget Allocation technique is used to determine the best simulation lengths for all simulation systems and to reduce the total computation time. We also argue the effect of increment in simulation samples for the combined procedure. The results of numerical illustration show clearly the effect of increment in simulation samples on the proposed combination of selection procedure.Keywords: Indifference-Zone, Optimal Computing Budget Allocation, Ordinal Optimization, Ranking and Selection, Subset Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401557 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).
Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11191556 Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine
Authors: Gowrishankar Kasilingam
Abstract:
This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.
Keywords: Particle Swarm Optimization, PID Controller, Power System Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30371555 Modeling and Simulation of Axial Fan Using CFD
Authors: Hemant Kumawat
Abstract:
Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively low pressures. In general, they are low in cost and possess good efficiency, and can have blades of airfoil shape. Axial flow fans show good efficiencies, and can operate at high static pressures if such operation is necessary. Our objective is to model and analyze the flow through AXIAL FANS using CFD Software and draw inference from the obtained results, so as to get maximum efficiency. The performance of an axial fan was simulated using CFD and the effect of variation of different parameters such as the blade number, noise level, velocity, temperature and pressure distribution on the blade surface was studied. This paper aims to present a final 3D CAD model of axial flow fan. Adapting this model to the available components in the market, the first optimization was done. After this step, CFX flow solver is used to do the necessary numerical analyses on the aerodynamic performance of this model. This analysis results in a final optimization of the proposed 3D model which is presented in this article.
Keywords: ANSYS CFX, Axial Fan, Computational Fluid Dynamics (CFD), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111991554 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method
Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi
Abstract:
Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251553 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24191552 Method for Determining the Probing Points for Efficient Measurement of Freeform Surface
Authors: Yi Xu, Zexiang Li
Abstract:
In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.
Keywords: eigenvalue-optimal optimization, freeform surface inspection, sampling size and location, sampled points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12371551 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming
Authors: Chuan Li, Ming Liang, Qibing Yu
Abstract:
To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581550 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16471549 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35861548 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process
Authors: M. Massour El Aoud, M. Franceschi, M. Maher
Abstract:
The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.
Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19451547 Evaluation of Evolution Strategy, Genetic Algorithm and their Hybrid on Evolving Simulated Car Racing Controllers
Authors: Hidehiko Okada, Jumpei Tokida
Abstract:
Researchers have been applying tional intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In th our experimental result on the comparison of three evolutionary algorithms – evolution strategy, genetic algorithm, and their hybrid applied to evolving controller agents for the CIG 2007 Simulated Car Racing competition. Our experimental result shows that, premature convergence of solutions was observed in the case of ES, and GA outperformed ES in the last half of generations. Besides, a hybrid which uses GA first and ES next evolved the best solution among the whole solutions being generated. This result shows the ability of GA in globally searching promising areas in the early stage and the ability of ES in locally searching the focused area (fine-tuning solutions).Keywords: Evolutionary algorithm, autonomous agent, neuroevolutions, simulated car racing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808