Search results for: reference linear combination (RLC)
2669 The Effects of Organic or Inorganic Zinc and Microbial Phytase, Alone or in Combination, on the Performance, Biochemical Parameters and Nutrient Utilization of Broilers Fed a Diet Low in Available Phosphorus
Authors: Mustafa Midilli, Mustafa Salman, Omer Hakan Muglali, Tülay Ögretmen, Sena Cenesiz, Neslihan Ormanci
Abstract:
This study examined the effects of zinc (Zn) from different sources and microbial phytase on the broiler performance, biochemical parameters and digestibility of nutrients when they were added to broiler diets containing low available phosphorus. A total of 875, 1-day-old male broilers of the Ross 308 strain were randomly separated into two control groups (positive and negative) and five treatment groups each containing 125 birds; each group was divided into 5 replicates of 25 birds. The positive control (PC) group was fed a diet containing adequate concentration (0.45%) of available phosphorus due to mineral premix (except zinc) and feeds. The negative control (NC) group was fed a basal diet including low concentration (0.30%) of available phosphorus due to mineral premix (except zinc) and feeds. The basal diet was supplemented with 0.30% phosphorus and 500 FTU phytase (PH); 0.30% phosphorus and organic zinc (OZ; 75mg/kg of Zn from Zn-proteinate); 0.30% phosphorus and inorganic zinc (IZ; 75 mg/kg of Zn from ZnSO4); 0.30% phosphorus, organic zinc and 500 FTU phytase (OZ + PH); and 0.30% phosphorus, inorganic zinc and 500 FTU phytase (IZ + PH) in the treatment groups 1, 2, 3, 4 and 5, respectively. The lowest value for mean body weight was in the negative control group on a diet containing low available phosphorus. The use of supplementation with organic and inorganic zinc alone or in combination with microbial phytase significantly (P<0.05) increased the digestibility of Zn in the male broilers. Supplementation of those diets with OZ + PH or IZ + PH was very effective for increasing the body weight, body weight gain and the feed conversion ratio. In conclusion, the effects on broilers of diets with low phosphorus levels may be overcome by the addition of inorganic or organic zinc compounds in combination with microbial phytase.
Keywords: Broiler, Performance, Phytase, Phosphorus, Zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28062668 Global Chaos Synchronization of Identical and Nonidentical Chaotic Systems Using Only Two Nonlinear Controllers
Authors: Azizan Bin Saaban, Adyda Binti Ibrahim, Mohammad Shehzad, Israr Ahmad
Abstract:
In chaos synchronization, the main goal is to design such controller(s) that synchronizes the states of master and slave system asymptotically globally. This paper studied and investigated the synchronization problem of two identical Chen, and identical Tigan chaotic systems and two non-identical Chen and Tigan chaotic systems using Non-linear active control algorithm. In this study, based on Lyapunov stability theory and using non-linear active control algorithm, it has been shown that the proposed schemes have excellent transient performance using only two nonlinear controllers and have shown analytically as well as graphically that synchronization is asymptotically globally stable.
Keywords: Nonlinear Active Control, Chen and Tigan Chaotic systems, Lyapunov Stability theory, Synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19622667 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata
Abstract:
This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15012666 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels
Authors: Rajoo Pandey
Abstract:
Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.
Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18912665 Fuzzy Control of Macroeconomic Models
Authors: Andre A. Keller
Abstract:
The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19942664 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise
Authors: Yan Li, Ronald Briggs
Abstract:
Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.
Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012663 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16332662 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8292661 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle
Authors: Sri Raman A., A.K.Ghosh
Abstract:
At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.
Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715862660 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification
Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy
Abstract:
Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.
Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21422659 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions
Authors: R. Mallika, V. Saravanan
Abstract:
This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25622658 Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation
Authors: Manoochehr Gholipoor
Abstract:
The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.Keywords: Rainfed-chickpea, biomass, harvest index, grain yield, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13342657 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations
Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni
Abstract:
This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.Keywords: Busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322656 A New Weighted LDA Method in Comparison to Some Versions of LDA
Authors: Delaram Jarchi, Reza Boostani
Abstract:
Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232655 Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“
Authors: Yury Nikulin
Abstract:
A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.
Keywords: Stability and accuracy, multicriteria optimization, lexicographic optimality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10402654 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop
Authors: Amin Sahraeian
Abstract:
One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.Keywords: parallel flow shop, make span, linear programming, budget
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792653 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation
Authors: Suresh Alapati, Sreehari Rao Patri, K. S. R. Krishna Prasad
Abstract:
Anultra-low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gainenhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 )A. An undershot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 )s for the output voltage undershooting case. The load regulation is of 2.77 )V/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.
Keywords: Capacitor-less LDO, frequency compensation, Transient response, latch, self-biased differential amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40652652 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35872651 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter
Authors: Mounir Sayadi, Farhat Fnaiech
Abstract:
In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.
Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16152650 Weight Functions for Signal Reconstruction Based On Level Crossings
Authors: Nagesha, G. Hemantha Kumar
Abstract:
Although the level crossing concept has been the subject of intensive investigation over the last few years, certain problems of great interest remain unsolved. One of these concern is distribution of threshold levels. This paper presents a new threshold level allocation schemes for level crossing based on nonuniform sampling. Intuitively, it is more reasonable if the information rich regions of the signal are sampled finer and those with sparse information are sampled coarser. To achieve this objective, we propose non-linear quantization functions which dynamically assign the number of quantization levels depending on the importance of the given amplitude range. Two new approaches to determine the importance of the given amplitude segment are presented. The proposed methods are based on exponential and logarithmic functions. Various aspects of proposed techniques are discussed and experimentally validated. Its efficacy is investigated by comparison with uniform sampling.
Keywords: speech signals, sampling, signal reconstruction, asynchronousdelta modulation, non-linear quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16512649 Development of a Comprehensive Electricity Generation Simulation Model Using a Mixed Integer Programming Approach
Authors: Erik Delarue, David Bekaert, Ronnie Belmans, William D'haeseleer
Abstract:
This paper presents the development of an electricity simulation model taking into account electrical network constraints, applied on the Belgian power system. The base of the model is optimizing an extensive Unit Commitment (UC) problem through the use of Mixed Integer Linear Programming (MILP). Electrical constraints are incorporated through the implementation of a DC load flow. The model encloses the Belgian power system in a 220 – 380 kV high voltage network (i.e., 93 power plants and 106 nodes). The model features the use of pumping storage facilities as well as the inclusion of spinning reserves in a single optimization process. Solution times of the model stay below reasonable values.
Keywords: Electricity generation modeling, Unit Commitment(UC), Mixed Integer Linear Programming (MILP), DC load flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20432648 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability
Authors: K. Saravanan
Abstract:
An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13962647 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation
Authors: Dongsu Wu, Hongbin Gu, Peng Li
Abstract:
A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.
Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20322646 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).
Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38682645 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24772644 A New Graphical Password: Combination of Recall & Recognition Based Approach
Authors: Md. Asraful Haque, Babbar Imam
Abstract:
Information Security is the most describing problem in present times. To cop up with the security of the information, the passwords were introduced. The alphanumeric passwords are the most popular authentication method and still used up to now. However, text based passwords suffer from various drawbacks such as they are easy to crack through dictionary attacks, brute force attacks, keylogger, social engineering etc. Graphical Password is a good replacement for text password. Psychological studies say that human can remember pictures better than text. So this is the fact that graphical passwords are easy to remember. But at the same time due to this reason most of the graphical passwords are prone to shoulder surfing. In this paper, we have suggested a shoulder-surfing resistant graphical password authentication method. The system is a combination of recognition and pure recall based techniques. Proposed scheme can be useful for smart hand held devices (like smart phones i.e. PDAs, iPod, iPhone, etc) which are more handy and convenient to use than traditional desktop computer systems.
Keywords: Authentication, Graphical Password, Text Password, Information Security, Shoulder-surfing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41452643 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.
Keywords: Generalized matrix approach, linear analysis, renewable applications, switched reluctance generator, SRG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6072642 Application of PSK Modulation in ADS-B 1090 Extended Squitter Authentication
Authors: A-Q. Nguyen. A. Amrhar, J. Zambrano, G. Brown, O.A. Yeste-Ojeda, R. Jr. Landry
Abstract:
Since the presence of Next Generation Air Transportation System (NextGen), Automatic Dependent Surveillance-Broadcast (ADS-B) has raised specific concerns related to the privacy and security, due to its vulnerable, low-level of security and limited payload. In this paper, the authors introduce and analyze the combination of Pulse Amplitude Modulation (PAM) and Phase Shift Keying (PSK) Modulation in conventional ADS-B, forming Secure ADS-B (SADS-B) avionics. In order to demonstrate the potential of this combination, Hardware-in-the-loop (HIL) simulation was used. The tests' results show that, on the one hand, SADS-B can offer five times the payload as its predecessor. This additional payload of SADS-B can be used in various applications, therefore enhancing the ability and efficiency of the current ADS-B. On the other hand, by using the extra phase modulated bits as a digital signature to authenticate ADS-B messages, SADS-B can increase the security of ADS-B, thus ensure a more secure aviation as well. More importantly, SADS-B is compatible with the current ADS-B In and Out. Hence, no significant modifications will be needed to implement this idea. As a result, SADS-B can be considered the most promising approach to enhance the capability and security of ADS-B.
Keywords: ADS-B authentication, ADS-B security, NextGen ADS-B, PSK signature, secure ADS-B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13002641 Specifying Strict Serializability of Iterated Transactions in Propositional Temporal Logic
Authors: Walter Hussak
Abstract:
We present an operator for a propositional linear temporal logic over infinite schedules of iterated transactions, which, when applied to a formula, asserts that any schedule satisfying the formula is serializable. The resulting logic is suitable for specifying and verifying consistency properties of concurrent transaction management systems, that can be defined in terms of serializability, as well as other general safety and liveness properties. A strict form of serializability is used requiring that, whenever the read and write steps of a transaction occurrence precede the read and write steps of another transaction occurrence in a schedule, the first transaction must precede the second transaction in an equivalent serial schedule. This work improves on previous work in providing a propositional temporal logic with a serializability operator that is of the same PSPACE complete computational complexity as standard propositional linear temporal logic without a serializability operator.
Keywords: Temporal logic, iterated transactions, serializability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15662640 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.
Keywords: Numerical simulation, carbonization, gasification, reactor, biomass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725