Search results for: financial models
2368 Formal Modeling and Verification of Software Models
Authors: Siamak Rasulzadeh
Abstract:
Graph transformation has recently become more and more popular as a general visual modeling language to formally state the dynamic semantics of the designed models. Especially, it is a very natural formalism for languages which basically are graph (e.g. UML). Using this technique, we present a highly understandable yet precise approach to formally model and analyze the behavioral semantics of UML 2.0 Activity diagrams. In our proposal, AGG is used to design Activities, then using our previous approach to model checking graph transformation systems, designers can verify and analyze designed Activity diagrams by checking the interesting properties as combination of graph rules and LTL (Linear Temporal Logic) formulas on the Activities.Keywords: UML 2.0 Activity, Verification, Model Checking, Graph Transformation, Dynamic Semantics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14452367 The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies
Authors: Matheus Borges Carneiro, Fabiane Letícia Lizarelli, José Carlos de Toledo
Abstract:
The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.
Keywords: Balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5812366 Minimum Fluidization Velocities of Binary-Solid Mixtures: Model Comparison
Authors: Mohammad Asif
Abstract:
An accurate prediction of the minimum fluidization velocity is a crucial hydrodynamic aspect of the design of fluidized bed reactors. Common approaches for the prediction of the minimum fluidization velocities of binary-solid fluidized beds are first discussed here. The data of our own careful experimental investigation involving a binary-solid pair fluidized with water is presented. The effect of the relative composition of the two solid species comprising the fluidized bed on the bed void fraction at the incipient fluidization condition is reported and its influence on the minimum fluidization velocity is discussed. In this connection, the capability of packing models to predict the bed void fraction is also examined.Keywords: Bed void fraction, Binary solid mixture, Minimumfluidization velocity, Packing models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26462365 An Analysis of Innovative Cloud Model as Bridging the Gap between Physical and Virtualized Business Environments: The Customer Perspective
Authors: Asim Majeed, Rehan Bhana, Mak Sharma, Rebecca Goode, Nizam Bolia, Mike, Lloyd-Williams
Abstract:
This study aims to investigate and explore the underlying causes of security concerns of customers emerged when WHSmith transformed its physical system to virtualized business model through NetSuite. NetSuite is essentially fully integrated software which helps transforming the physical system to virtualized business model. Modern organisations are moving away from traditional business models to cloud based models and consequently it is expected to have a better, secure and innovative environment for customers. The vital issue of the modern age race is the security when transforming virtualized through cloud based models and designers of interactive systems often misunderstand privacy and even often ignore it, thus causing concerns for users. The content analysis approach is being used to collect the qualitative data from 120 online bloggers including TRUSTPILOT. The results and finding provide useful new insights into the nature and form of security concerns of online users after they have used the WHSmith services offered online through their website. Findings have theoretical as well as practical implications for the successful adoption of cloud computing Business-to-Business model and similar systems.Keywords: Innovation, virtualization, cloud computing, organizational flexibility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17552364 Implementation of Quantum Rotation Gates Using Controlled Non-Adiabatic Evolutions
Authors: Abdelrahman A. H. Abdelrahim, Gharib Subhi Mahmoud, Sherzod Turaev, Azeddine Messikh
Abstract:
Quantum gates are the basic building blocks in the quantum circuits model. These gates can be implemented using adiabatic or non adiabatic processes. Adiabatic models can be controlled using auxiliary qubits, whereas non adiabatic models can be simplified by using one single-shot implementation. In this paper, the controlled adiabatic evolutions is combined with the single-shot implementation to obtain quantum gates with controlled non adiabatic evolutions. This is an important improvement which can speed the implementation of quantum gates and reduce the errors due to the long run in the adiabatic model. The robustness of our scheme to different types of errors is also investigated.Keywords: Adiabatic evolutions, non adiabatic evolutions, controlled adiabatic evolutions, quantum rotation gates, dephasing rates, master equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11672363 Semantic Modeling of Management Information: Enabling Automatic Reasoning on DMTF-CIM
Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano
Abstract:
CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping can be used for automatic reasoning about the management information models, as a design aid, by means of new-generation CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.Keywords: CIM, Knowledge-based Information Models, Ontology Languages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17322362 Deficits and Solutions in the Development of Modular Factory Systems
Authors: Achim Kampker, Peter Burggräf, Moritz Krunke, Hanno Voet
Abstract:
As a reaction to current challenges in factory planning, many companies think about introducing factory standards to lower planning times and decrease planning costs. If these factory standards are set-up with a high level of modularity, they are defined as modular factory systems. This paper deals with the main current problems in the application of modular factory systems in practice and presents a solution approach with its basic models. The methodology is based on methods from factory planning but also uses the tools of other disciplines like product development or technology management to deal with the high complexity, which the development of modular factory systems implies. The four basic models that such a methodology has to contain are introduced and pointed out.
Keywords: Factory planning, modular factory systems, factory standards, cost-benefit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9852361 Social Business Models: When Profits and Impacts Are Not at Odds
Authors: Elisa Pautasso, Matteo Castagno, Michele Osella
Abstract:
In the last decade the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.Keywords: Business model, case study, impacts, social business.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18112360 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte
Abstract:
This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.
Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21952359 Evidence of Climate Change (Global Warming) and Temperature Increases in Arctic Areas
Authors: Eric Kojo Wu Aikins
Abstract:
This paper contributes to the debate on the proximate causes of climate change. Also, it discusses the impact of the global temperature increases since the beginning of the twentieth century and the effectiveness of climate change models in isolating the primary cause (anthropogenic influences or natural variability in temperature) of the observed temperature increases that occurred within this period. The paper argues that if climate scientist and policymakers ignore the anthropogenic influence (greenhouse gases) on global warming on the pretense of lack of agreement among various climate models and their inability to account for all the necessary factors of global warming at all levels the current efforts of greenhouse emissions control and global warming as a whole could be exacerbated.Keywords: Anthropogenic Effects, Arctic, Climate Change, Natural Variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16232358 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device
Authors: Muhibul Haque Bhuyan
Abstract:
This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872357 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14042356 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective
Authors: M. K. Witek-Hajduk, T. M. Napiórkowski
Abstract:
A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.
Keywords: Business model, cooperation, cluster analysis, retailer-manufacturer relationships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11212355 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14102354 Application of Functional Network to Solving Classification Problems
Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong
Abstract:
In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13102353 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21332352 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.
Keywords: Construction cost factors, neural networks, roadworks, Zambian Construction Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38252351 3D Dynamic Representation System for the Human Head
Authors: Laurenţiu Militeanu, Cristina Gena Dascâlu, D. Cristea
Abstract:
The human head representations usually are based on the morphological – structural components of a real model. Over the time became more and more necessary to achieve full virtual models that comply very rigorous with the specifications of the human anatomy. Still, making and using a model perfectly fitted with the real anatomy is a difficult task, because it requires large hardware resources and significant times for processing. That is why it is necessary to choose the best compromise solution, which keeps the right balance between the details perfection and the resources consumption, in order to obtain facial animations with real-time rendering. We will present here the way in which we achieved such a 3D system that we intend to use as a base point in order to create facial animations with real-time rendering, used in medicine to find and to identify different types of pathologies.Keywords: 3D models, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14562350 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: Information theory, prediction model, prosthetic alignment, transtibial prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9372349 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18672348 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).
Keywords: Power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19152347 Adsorption of Inorganic Salt by Granular Activated Carbon and Related Prediction Models
Authors: Kai-Lin Hsu, Jie-Chung Lou, Jia-Yun Han
Abstract:
In recent years, the underground water sources in southern Taiwan have become salinized because of saltwater intrusions. This study explores the adsorption characteristics of activated carbon on salinizing inorganic salts using isothermal adsorption experiments and provides a model analysis. The temperature range for the isothermal adsorption experiments ranged between 5 to 45 ℃, and the amount adsorbed varied between 28.21 to 33.87 mg/g. All experimental data of adsorption can be fitted to both the Langmuir and the Freundlich models. The thermodynamic parameters for per chlorate onto granular activated carbon were calculated as -0.99 to -1.11 kcal/mol for DG°, -0.6 kcal/mol for DH°, and 1.21 to 1.84 kcal/mol for DS°. This shows that the adsorption process of granular activated carbon is spontaneously exothermic. The observation of adsorption behaviors under low ionic strength, low pH values, and low temperatures is beneficial to the adsorption removal of perchlorate with granular activated carbon.Keywords: Water Treatment, Per Chlorate, Adsorption, Granular Activated Carbon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27312346 Proposal of Design Method in the Semi-Acausal System Model
Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.
Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22312345 Coloured Reconfigurable Nets for Code Mobility Modeling
Authors: Kahloul Laid, Chaoui Allaoua
Abstract:
Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets" and to show how this one seems to be adequate to model different kinds of code mobility.
Keywords: Code mobility, modelling mobility, labelled reconfigurable nets, Coloured reconfigurable nets, mobile code design paradigms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15582344 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.
Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4202343 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.
Keywords: Parkinson's disease, stability, simulation, two delay differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6622342 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.
Keywords: Concrete bridges, deterioration, Markov chains, probability matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14402341 Application of Build-up and Wash-off Models for an East-Australian Catchment
Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain
Abstract:
Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21832340 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: Nuclear rainbow, elastic scattering, optical model, double folding, density distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17162339 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524