Search results for: binary data matrix model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13548

Search results for: binary data matrix model

12858 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
12857 New Stabilization for Switched Neutral Systems with Perturbations

Authors: Lianglin Xiong, Shouming Zhong, Mao Ye

Abstract:

This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.

Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
12856 DCBOR: A Density Clustering Based on Outlier Removal

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. We present an enhanced version of the well known single link clustering algorithm. We will refer to this algorithm as DCBOR. The proposed algorithm alleviates the chain effect by removing the outliers from the given dataset. So this algorithm provides outlier detection and data clustering simultaneously. This algorithm does not need to update the distance matrix, since the algorithm depends on merging the most k-nearest objects in one step and the cluster continues grow as long as possible under specified condition. So the algorithm consists of two phases; at the first phase, it removes the outliers from the input dataset. At the second phase, it performs the clustering process. This algorithm discovers clusters of different shapes, sizes, densities and requires only one input parameter; this parameter represents a threshold for outlier points. The value of the input parameter is ranging from 0 to 1. The algorithm supports the user in determining an appropriate value for it. We have tested this algorithm on different datasets contain outlier and connecting clusters by chain of density points, and the algorithm discovers the correct clusters. The results of our experiments demonstrate the effectiveness and the efficiency of DCBOR.

Keywords: Data Clustering, Clustering Algorithms, Handling Noise, Arbitrary Shape of Clusters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
12855 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek

Abstract:

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
12854 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
12853 External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo, Yu-Ping Liao

Abstract:

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

Keywords: forecasting, passenger volume, dynamic competitive model, social-economic variables, oil price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
12852 Comparison of Multi-User Detectors of DS-CDMA System

Authors: Kavita Khairnar, Shikha Nema

Abstract:

DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.

Keywords: Cross Correlation Matrix, MAI, Multi-UserDetection, Multipath Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
12851 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
12850 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
12849 Effects of Coupling Agent on the Properties of Henequen Microfiber (NF) Filled High Density Polyethylene (HDPE) Composites

Authors: Pravin Gaikwad, Prakash Mahanwar

Abstract:

The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant. 

Keywords: Henequen microfibers (NF), polymer composites, HDPE, coupling agent, GPTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
12848 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: Data envelopment analysis, super efficiency, financial ratios, BCC model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
12847 A Fuzzy Mixed Integer Multi-Scenario Portfolio Optimization Model

Authors: M. S. Osman, A. A. Tharwat, I. A. El-Khodary, A. G. Chalabi

Abstract:

In this paper, we propose a multiple objective optimization model with respect to portfolio selection problem for investors looking forward to diversify their equity investments in a number of equity markets. Based on Markowitz-s M-V model we developed a Fuzzy Mixed Integer Multi-Objective Nonlinear Programming Problem (FMIMONLP) to maximize the investors- future gains on equity markets, reach the optimal proportion of the budget to be invested in different equities. A numerical example with a comprehensive analysis on artificial data from several equity markets is presented in order to illustrate the proposed model and its solution method. The model performed well compared with the deterministic version of the model.

Keywords: Equity Markets, Future Scenarios, PortfolioSelection, Multiple Criteria Fuzzy Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
12846 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor is embedded in composite material to detect and monitor the damage that occurs in composite structures. In this paper, we deal with the mode-Ι delamination to determine the material strength to crack propagation, using the coupling mode theory and T-matrix method to simulate the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test is modeled in FEM to determine the longitudinal strain. Two models are implemented, the first is the global half model, and the second is the sub-model to represent the FBGs with higher refined mesh. This method can simulate damage in composite structures and converting strain to a wavelength shifting in the FBG spectrum.

Keywords: Fiber Bragg grating, Delamination detection, DCB, FBG spectrum, Structure health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551
12845 Parametric Study of Vertical Diffusion Still for Water Desalination

Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
12844 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
12843 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
12842 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure

Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu

Abstract:

This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; compared with LIPS-200 life test data. The results of the numerical model are in reasonable agreement with the measured data. Finally, we predicted the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrated that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.

Keywords: Ion thruster, accelerator gird, sputter erosion, lifetime assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
12841 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays

Authors: I. Davies, O. L. C. Haas

Abstract:

In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.

Keywords: Infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
12840 Stiffness Modeling of 3-PRS Mechanism

Authors: Xiaohui Han, Yuhan Wang, Jing Shi

Abstract:

This paper proposed a stiffness analysis method for a 3-PRS mechanism for welding thick aluminum plate using FSW technology. In the molding process, elastic deformation of lead-screws and links are taken into account. This method is based on the virtual work principle. Through a survey of the commonly used stiffness performance indices, the minimum and maximum eigenvalues of the stiffness matrix are used to evaluate the stiffness of the 3-PRS mechanism. Furthermore, A FEA model has been constructed to verify the method. Finally, we redefined the workspace using the stiffness analysis method.

Keywords: 3-PRS, parallel mechanism, stiffness analysis, workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
12839 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test

Authors: Harald Rojacz, Markus Varga, Horst Winkelmann

Abstract:

Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.

Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
12838 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
12837 A Combinatorial Model for ECG Interpretation

Authors: Costas S. Iliopoulos, Spiros Michalakopoulos

Abstract:

A new, combinatorial model for analyzing and inter- preting an electrocardiogram (ECG) is presented. An application of the model is QRS peak detection. This is demonstrated with an online algorithm, which is shown to be space as well as time efficient. Experimental results on the MIT-BIH Arrhythmia database show that this novel approach is promising. Further uses for this approach are discussed, such as taking advantage of its small memory requirements and interpreting large amounts of pre-recorded ECG data.

Keywords: Combinatorics, ECG analysis, MIT-BIH Arrhythmia Database, QRS Detection, String Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
12836 An Improved Preprocessing for Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

An improved processing description to be employed in biosonar signal processing in a cochlea model is proposed and examined. It is compared to conventional models using a modified discrimination analysis and both are tested. Their performances are evaluated with echo data captured from natural targets (trees).Results indicate that the phase characteristics of low-pass filters employed in the echo processing have a significant effect on class separability for this data.

Keywords: Cochlea model, discriminant analysis, neurospikecoding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
12835 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

Authors: Zohreh O. Akbari

Abstract:

In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph-s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-time algorithm for the Clique problem, as an NP-complete problem will prove the equality of P and NP complexity classes.

Keywords: Clique problem, Deterministic Polynomial-time Algorithm, Equality of P and NP Complexity Classes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
12834 Lattice Dynamics of (ND4Br)x(KBr)1-x Mixed Crystals

Authors: Alpana Tiwari, N. K. Gaur

Abstract:

We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). The dynamical matrix of ETSM has been applied to compute the phonon frequencies of orientationally disordered mixed crystal (ND4Br)x(KBr)1-x in (q00), (qq0) and (qqq) symmetry directions for compositions 0.10≤x≤0.50 at T=300K.These frequencies are plotted as a function of wave vector k. An unusual acoustic mode softening is found along symmetry directions (q00) and (qq0) as a result of translation-rotation coupling.

Keywords: Orientational glass, phonons, TR-coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
12833 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: Separation, activity coefficients, ionic liquid, methyltrioctylammonium chloride, capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
12832 A DEA Model for Performance Evaluation in The Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

Data Envelopment Analysis (DEA) is a methodology that computes efficiency values for decision making units (DMU) in a given period by comparing the outputs with the inputs. In many cases, there are some time lag between the consumption of inputs and the production of outputs. For a long-term research project, it is hard to avoid the production lead time phenomenon. This time lag effect should be considered in evaluating the performance of organizations. This paper suggests a model to calculate efficiency values for the performance evaluation problem with time lag. In the experimental part, the proposed methods are compared with the CCR and an existing time lag model using the data set of the 21st century frontier R&D program which is a long-term national R&D program of Korea.

Keywords: DEA, Efficiency, Time Lag

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
12831 Preparation and Physical Characterization of Nanocomposites of PLA / Layered Silicates

Authors: I. Restrepo, S. Solorzano

Abstract:

This work was focused in to study the compatibility, dispersion and exfoliation of modified nanoclays in biodegradable polymers and evaluate its effect on the physical, mechanical and thermal properties on the biodegradable matrix used. The formulations have been developed with polylactic acid (PLA) and organically modified montmorillonite-type commercial nanoclays (Cloisite 15, Cloisite 20, and Cloisite 30B) in the presence of a plasticizer agent, specifically Polyethylene Glycol of low molecular weight. Different compositions were evaluated, in order to identify the influence of each nanoclayin the polymeric matrix. The mixtures were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (DRX), transmission electron microscopy (TEM) and Tensile Test. These tests have allowed understanding the behavior of each of the mixtures developed.

Keywords: Biopolymers, Nanoclays, polylacticacid (PLA), polymer blends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
12830 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: Climate change, Semnan province, LARS-WG model, climate parameters, HADCM3 model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
12829 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model

Authors: Satoshi Usami

Abstract:

Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.

Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867