Search results for: assembly machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1428

Search results for: assembly machine

738 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
737 Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool

Authors: Abhay Bodake, Ping Sui, Hafeez Syed, Ratish Kadam

Abstract:

Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.

Keywords: FEA, M/LWD, Oil & Gas, Strain Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
736 Effect of High Injection Pressure on Mixture Formation, Burning Process and Combustion Characteristics in Diesel Combustion

Authors: Amir Khalid, B. Manshoor

Abstract:

The mixture formation prior to the ignition process plays as a key element in the diesel combustion. Parametric studies of mixture formation and ignition process in various injection parameter has received considerable attention in potential for reducing emissions. Purpose of this study is to clarify the effects of injection pressure on mixture formation and ignition especially during ignition delay period, which have to be significantly influences throughout the combustion process and exhaust emissions. This study investigated the effects of injection pressure on diesel combustion fundamentally using rapid compression machine. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed camera. This method can capture spray evaporation, spray interference, mixture formation and flame development clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. The injection pressure and air motion are important variable that strongly affect to the fuel evaporation, endothermic and prolysis process during ignition delay. An increased injection pressure makes spray tip penetration longer and promotes a greater amount of fuel-air mixing occurs during ignition delay. A greater quantity of fuel prepared during ignition delay period thus predominantly promotes more rapid heat release.

Keywords: Mixture Formation, Diesel Combustion, Ignition Process, Spray, Rapid Compression Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
735 Anthocyanin Complex: Characterization and Cytotoxicity Studies

Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang

Abstract:

Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. ceritina Kulesh. and delphinidin-rich extracts from Clitoria ternatea L. were used to form 4 anthocyanin complexes, AC1, AC2, AC3 and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation. FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding. Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.

Keywords: Anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662
734 Effect of Ply Orientation on Roughness for the Trimming Process of CFRP Laminates

Authors: Jean François Chatelain, Imed Zaghbani, Joseph Monier

Abstract:

The machining of Carbon Fiber Reinforced Plastics has come to constitute a significant challenge for many fields of industry. The resulting surface finish of machined parts is of primary concern for several reasons, including contact quality and impact on the assembly. Therefore, the characterization and prediction of roughness based on machining parameters are crucial for costeffective operations. In this study, a PCD tool comprised of two straight flutes was used to trim 32-ply carbon fiber laminates in a bid to analyze the effects of the feed rate and the cutting speed on the surface roughness. The results show that while the speed has but a slight impact on the surface finish, the feed rate for its part affects it strongly. A detailed study was also conducted on the effect of fiber orientation on surface roughness, for quasi-isotropic laminates used in aerospace. The resulting roughness profiles for the four-ply orientation lay-up were compared, and it was found that fiber angle is a critical parameter relating to surface roughness. One of the four orientations studied led to very poor surface finishes, and characteristic roughness profiles were identified and found to only relate to the ply orientations of multilayer carbon fiber laminates.

Keywords: Roughness, Detouring, Composites, Aerospace

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
733 The Development of the Prototype of Bamboo Shading Device

Authors: N. Tuaycharoen, W. Konisranukul

Abstract:

The main aim of this research was to investigate a prototype bamboo shading device. There were two objectives to this study: first, to investigate the effects of non-chemical treatments on bamboo shading devices damaged by powder-post beetles and fungi, and second to develop a prototype bamboo shading device. This study of the effects of non-chemical treatments on bamboo shading devices damage by powder-post beetles in the laboratory showed that, among seven treatments tested, wood vinegar treatment can protect powder-post beetles better than the original method by up to 92.91%. It was also found that wood vinegar treatment shows the best performance in fungi protection and works better than the original method by up to 40%. A second experiment was carried out by constructing four bamboo shading devices and installing them on a building for 28 days. All aspects of shading device were investigated in terms of their beauty, durability, and ease of construction and assembly. The final prototype was developed from the lessons learned from the test results. In conclusion, this study showed the effectiveness of some natural preservatives against insect and fungi damage, and it also illustrated the characteristics of a prototype bamboo shading device that can be constructed by rural workers within one week.

Keywords: Bamboo, shading device, energy conservation, alternative materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
732 A New Version of Annotation Method with a XML-based Knowledge Base

Authors: Mohammad Yasrebi, Somayeh Khosravi

Abstract:

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Keywords: Knowledge base, ontology, semantic annotation, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
731 Object-Oriented Programming Strategies in C# for Power Conscious System

Authors: Kayun Chantarasathaporn, Chonawat Srisa-an

Abstract:

Low power consumption is a major constraint for battery-powered system like computer notebook or PDA. In the past, specialists usually designed both specific optimized equipments and codes to relief this concern. Doing like this could work for quite a long time, however, in this era, there is another significant restraint, the time to market. To be able to serve along the power constraint while can launch products in shorter production period, objectoriented programming (OOP) has stepped in to this field. Though everyone knows that OOP has quite much more overhead than assembly and procedural languages, development trend still heads to this new world, which contradicts with the target of low power consumption. Most of the prior power related software researches reported that OOP consumed much resource, however, as industry had to accept it due to business reasons, up to now, no papers yet had mentioned about how to choose the best OOP practice in this power limited boundary. This article is the pioneer that tries to specify and propose the optimized strategy in writing OOP software under energy concerned environment, based on quantitative real results. The language chosen for studying is C# based on .NET Framework 2.0 which is one of the trendy OOP development environments. The recommendation gotten from this research would be a good roadmap that can help developers in coding that well balances between time to market and time of battery.

Keywords: Low power consumption, object oriented programming, power conscious system, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
730 Improvement of Overall Equipment Effectiveness through Total Productive Maintenance

Authors: S. Fore, L. Zuze

Abstract:

Frequent machine breakdowns, low plant availability and increased overtime are a great threat to a manufacturing plant as they increase operating costs of an industry. The main aim of this study was to improve Overall Equipment Effectiveness (OEE) at a manufacturing company through the implementation of innovative maintenance strategies. A case study approach was used. The paper focuses on improving the maintenance in a manufacturing set up using an innovative maintenance regime mix to improve overall equipment effectiveness. Interviews, reviewing documentation and historical records, direct and participatory observation were used as data collection methods during the research. Usually production is based on the total kilowatt of motors produced per day. The target kilowatt at 91% availability is 75 Kilowatts a day. Reduced demand and lack of raw materials particularly imported items are adversely affecting the manufacturing operations. The company had to reset its targets from the usual figure of 250 Kilowatt per day to mere 75 per day due to lower availability of machines as result of breakdowns as well as lack of raw materials. The price reductions and uncertainties as well as general machine breakdowns further lowered production. Some recommendations were given. For instance, employee empowerment in the company will enhance responsibility and authority to improve and totally eliminate the six big losses. If the maintenance department is to realise its proper function in a progressive, innovative industrial society, then its personnel must be continuously trained to meet current needs as well as future requirements. To make the maintenance planning system effective, it is essential to keep track of all the corrective maintenance jobs and preventive maintenance inspections. For large processing plants these cannot be handled manually. It was therefore recommended that the company implement (Computerised Maintenance Management System) CMMS.

Keywords: Maintenance, Manufacturing, Overall Equipment Effectiveness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991
729 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: Automation, human factors, air traffic controller, MINIMA, OOTL, Out-Of-The-Loop, EEG, electroencephalography, HMI, human machine interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
728 An Empirical Model to Calculate the Threads Stripping of a Bolt Installed in a Tapped Part

Authors: Manuel Martínez Martínez, Daniel Zavala Ríos

Abstract:

To determine the length of engagement threads of a bolt installed in a tapped part in order to avoid the threads stripping remains a very current problem in the design of the thread assemblies. It does not exist a calculation method formalized for the cases where the bolt is screwed directly in a ductile material. In this article, we study the behavior of the threads stripping of a loaded assembly by using a modelling by finite elements and a rupture criterion by damage. This modelling enables us to study the different parameters likely to influence the behavior of this bolted connection. We study in particular, the influence of couple of materials constituting the connection, of the bolt-s diameter and the geometrical characteristics of the tapped part, like the external diameter and the length of engagement threads. We established an experiments design to know the most significant parameters. That enables us to propose a simple expression making possible to calculate the resistance of the threads whatever the metallic materials of the bolt and the tapped part. We carried out stripping tests in order to validate our model. The estimated results are very close to those obtained by the tests.

Keywords: Bolt, damage, plasticity, stripping, thread assemblies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
727 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements

Authors: K. Sandjak, B. Tiliouine

Abstract:

This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.

Keywords: Infinite elements, 3-D numerical investigation, asphalt pavements, dual and wide base tires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
726 Measuring Process Component Design on Achieving Managerial Goals

Authors: Eakong Atiptamvaree, Twittie Senivongse

Abstract:

Process-oriented software development is a new software development paradigm in which software design is modeled by a business process which is in turn translated into a process execution language for execution. The building blocks of this paradigm are software units that are composed together to work according to the flow of the business process. This new paradigm still exhibits the characteristic of the applications built with the traditional software component technology. This paper discusses an approach to apply a traditional technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses, and these process components can be reused to design the business processes of other application domains. The decomposition considers five managerial goals, namely cost effectiveness, ease of assembly, customization, reusability, and maintainability. The paper presents how to design or decompose process components from a business process model and measure some technical features of the design that would affect the managerial goals. A comparison between the measurement values from different designs can tell which process component design is more appropriate for the managerial goals that have been set. The proposed approach can be applied in Web Services environment which accommodates process-oriented software development.

Keywords: Business Process Model, Managerial Goals, ProcessComponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
725 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
724 Improving Automotive Efficiency through Lean Management Tools: A Case Study

Authors: Raed EL-Khalil, Hussein Zeaiter

Abstract:

Managing and improving efficiency in the current highly competitive global automotive industry demands that those companies adopt leaner and more flexible systems. During the past 20 years the domestic automotive industry in North America has been focusing on establishing new management strategies in order to meet market demands. The lean management process also known as Toyota Manufacturing Process (TPS) or lean manufacturing encompasses tools and techniques that were established in order to provide the best quality product with the fastest lead time at the lowest cost. The following paper presents a study that focused on improving labor efficiency at one of the Big Three (Ford, GM, Chrysler LLC) domestic automotive facility in North America. The objective of the study was to utilize several lean management tools in order to optimize the efficiency and utilization levels at the “Pre- Marriage” chassis area in a truck manufacturing and assembly facility. Utilizing three different lean tools (i.e. Standardization of work, 7 Wastes, and 5S) this research was able to improve efficiency by 51%, utilization by 246%, and reduce operations by 14%. The return on investment calculated based on the improvements made was 284%.

Keywords: Lean Manufacturing, Standardized Work, Operation Efficiency and Utilization, Operations Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5560
723 Industrial Compressor Anti-Surge Computer Control

Authors: Ventzas Dimitrios, Petropoulos George

Abstract:

The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.

Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8969
722 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
721 The Application of Queuing Theory in Multi-Stage Production Lines

Authors: Hani Shafeek, Muhammed Marsudi

Abstract:

The purpose of this work is examining the multiproduct multi-stage in a battery production line. To improve the performances of an assembly production line by determine the efficiency of each workstation. Data collected from every workstation. The data are throughput rate, number of operator, and number of parts that arrive and leaves during part processing. Data for the number of parts that arrives and leaves are collected at least at the amount of ten samples to make the data is possible to be analyzed by Chi-Squared Goodness Test and queuing theory. Measures of this model served as the comparison with the standard data available in the company. Validation of the task time value resulted by comparing it with the task time value based on the company database. Some performance factors for the multi-product multi-stage in a battery production line in this work are shown. The efficiency in each workstation was also shown. Total production time to produce each part can be determined by adding the total task time in each workstation. To reduce the queuing time and increase the efficiency based on the analysis any probably improvement should be done. One probably action is by increasing the number of operators how manually operate this workstation.

Keywords: Production line, manufacturing, performance measurement, queuing theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
720 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
719 Contextual Distribution for Textual Alignment

Authors: Yuri Bizzoni, Marianne Reboul

Abstract:

Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.

Keywords: Translation studies, machine translation, computational linguistics, distributional semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
718 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: Global supply chains, quality, stochastic programming, supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
717 On the Analysis and a Few Optimization Issues of a New iCIM 3000 System at an Academic-Research Oriented Institution

Authors: D. R. Delgado Sobrino, R. Holubek, R. Ružarovský

Abstract:

In the past years, the world has witnessed significant work in the field of Manufacturing. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Closely following all this, due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: moving toward a more intelligent manufacturing, the present paper emerges with the main aim of contributing to the analysis and a few customization issues of a new iCIM 3000 system at the IPSAM. In this process, special emphasis in made on the material flow problem. For this, besides offering a description and analysis of the system and its main parts, also some tips on how to define other possible alternative material flow scenarios and a partial analysis of the combinatorial nature of the problem are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a few figures and expressions which would help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Keywords: Flexible/Intelligent assembly/disassembly cell (F/IA/DC), Flexible/Intelligent Manufacturing Systems/Cell (F/IMS/C), Material Flow Optimization/Combinations/Design (MFO/C/D).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
716 Applications of Mobile Aluminum Light Structure Housing System in Sustainable Building Process

Authors: Haining Wang, Hong Zhang

Abstract:

Problems exist in the present construction industry in China. Conflicts hinder the development of the whole society, such as contradictions between resource reservation and a huge population, living space needs and low building production efficiency, as well as environment protection and high pollution production pattern. In order to solve the problems and find a solution, research is needed to explore a building system. By investigating the whole architectural process and contrasting analysis of light structures and heavy structures, the paper raised the concepts to cope with the existing challenges, such as design conception based on product and real construction processes, design methods focusing on components, and maximum utilization of the temporary building by optimizing the construction speed and building performance. The project was not only designed in virtual reality, but was also physically constructed in the real world. A series of aluminum light structure housing systems were dictated at last, with the characteristics of high performance, extremely rapid construction speed and also flexible function. It can be used in lots of aspects ranging from a single building in a remote area to a large residential community.

Keywords: Aluminum house, light structure, rapid assembly, repeat construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
715 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
714 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
713 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus

Authors: Muhibul H. Bhuyan, Mafujul Hasan

Abstract:

If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.

Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
712 An Semantic Algorithm for Text Categoritation

Authors: Xu Zhao

Abstract:

Text categorization techniques are widely used to many Information Retrieval (IR) applications. In this paper, we proposed a simple but efficient method that can automatically find the relationship between any pair of terms and documents, also an indexing matrix is established for text categorization. We call this method Indexing Matrix Categorization Machine (IMCM). Several experiments are conducted to show the efficiency and robust of our algorithm.

Keywords: Text categorization, Sub-space learning, Latent Semantic Space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
711 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
710 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
709 User-Driven Product Line Engineering for Assembling Large Families of Software

Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

Abstract:

Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories.

This paper proposes a software engineering for a user-driven software product line in which engineers define a Feature Model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families.

As a proof of concept, a user-driven software product line is implemented for Eclipse, an integrated development environment. An Eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.

Keywords: Software Product Line, Model-driven Development, Reverse Engineering and Refactoring, Agile Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832