Search results for: Photovoltaic power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3852

Search results for: Photovoltaic power generation

3162 A Single-Phase Register File with Complementary Pass-Transistor Adiabatic Logic

Authors: Jianping Hu, Xiaolei Sheng

Abstract:

This paper introduces an adiabatic register file based on two-phase CPAL (Complementary Pass-Transistor Adiabatic Logic circuits) with power-gating scheme, which can operate on a single-phase power clock. A 32×32 single-phase adiabatic register file with power-gating scheme has been implemented with TSMC 0.18μm CMOS technology. All the circuits except for the storage cells employ two-phase CPAL circuits, and the storage cell is based on the conventional memory one. The two-phase non-overlap power-clock generator with power-gating scheme is used to supply the proposed adiabatic register file. Full-custom layouts are drawn. The energy and functional simulations have been performed using the net-list extracted from their layouts. Compared with the traditional static CMOS register file, HSPICE simulations show that the proposed adiabatic register file can work very well, and it attains about 73% energy savings at 100 MHz.

Keywords: Low power, Register file, Complementarypass-transistor logic, Adiabatic logic, Single-phase power clock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
3161 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry

Authors: A. Alseiari, P. Farrell

Abstract:

Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.

Keywords: Abu Dhabi power industry, TPM implementation, key barriers, organisational culture, critical success factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
3160 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology

Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala

Abstract:

Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO2) and methane (CH4). Methane has the potential of causing global warming 25 times more than CO2, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH4 emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH4 emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH4 emissions in the year 2030.

Keywords: Methane, emissions, landfills, solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
3159 The Study and Practice of the Thermal Energy and Power Engineering Characteristic Specialty in China

Authors: Junjie Chen

Abstract:

According to the demand of the power and refrigeration industry, the theoretical and practical teachings of the Thermal Energy and Power Engineering characteristic specialty in china are studied. The teaching reform and practice of the Thermal Energy and Power Engineering specialty have been carried out, including construction and reform measures, teaching reform and practice, features, and achievements. Proved by practices, the theoretical and practical teaching effects are obvious. The study results can provides certain reference experience for theoretical and practical teachings of the related specialties in china.

Keywords: Theoretical teaching, practical teaching, Thermal Energy and Power Engineering, characteristic specialty, teaching reform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
3158 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.

Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
3157 Representation of Power System for Electromagnetic Transient Calculation

Authors: P. Sowa

Abstract:

The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.

Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
3156 New Design Methodologies for High Speed Low Power XOR-XNOR Circuits

Authors: Shiv Shankar Mishra, S. Wairya, R. K. Nagaria, S. Tiwari

Abstract:

New methodologies for XOR-XNOR circuits are proposed to improve the speed and power as these circuits are basic building blocks of many arithmetic circuits. This paper evaluates and compares the performance of various XOR-XNOR circuits. The performance of the XOR-XNOR circuits based on TSMC 0.18μm process models at all range of the supply voltage starting from 0.6V to 3.3V is evaluated by the comparison of the simulation results obtained from HSPICE. Simulation results reveal that the proposed circuit exhibit lower PDP and EDP, more power efficient and faster when compared with best available XOR-XNOR circuits in the literature.

Keywords: Exclusive-OR (XOR), Exclusive-NOR (XNOR), High speed, Low power, Arithmetic Circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
3155 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis

Abstract:

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10221
3154 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability

Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi

Abstract:

this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, CHAOS, PSO, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
3153 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9606
3152 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Authors: Shao-lun Zeng, Yu-long Ren

Abstract:

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
3151 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
3150 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch

Authors: Guo-Ming Sung, Naga Raju Naik R.

Abstract:

Paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.

Keywords: high-speed, low-power, flip-flop, sense-amplifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
3149 Prioritization of Mutation Test Generation with Centrality Measure

Authors: Supachai Supmak, Yachai Limpiyakorn

Abstract:

Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank, will be focused first when developing their test cases as these modules are vulnerable for defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.

Keywords: Software testing, mutation test, network centrality measure, test case prioritization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
3148 Stability Improvement of AC System by Controllability of the HVDC

Authors: Omid Borazjani, Alireza Rajabi, Mojtaba Saeedimoghadam, Khodakhast Isapour

Abstract:

High Voltage Direct Current (HVDC) power transmission is employed to move large amounts of electric power. There are several possibilities to enhance the transient stability in a power system. One adequate option is by using the high controllability of the HVDC if HVDC is available in the system. This paper presents a control technique for HVDC to enhance the transient stability. The strategy controls the power through the HVDC to help make the system more transient stable during disturbances. Loss of synchronism is prevented by quickly producing sufficient decelerating energy to counteract accelerating energy gained during. In this study, the power flow in the HVDC link is modulated with the addition of an auxiliary signal to the current reference of the rectifier firing angle controller. This modulation control signal is derived from speed deviation signal of the generator utilizing a PD controller; the utilization of a PD controller is suitable because it has the property of fast response. The effectiveness of the proposed controller is demonstrated with a SMIB test system.

Keywords: HVDC, SMIB, Stability, Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
3147 Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant

Authors: Thitiporn Supasri, Natanee Vorayos, Piriya Thongchiew

Abstract:

Electrification is a complex process and governed by various parameters.  Modeling of power plant’s target efficiency or target heat rate is often formulated and compared with the actual values. This comparison not only implies the performance of the power plant but also reflects the energy losses possibly inherited in some of related equipment and processes. The current modeling of Coal-fired Mae Moh power plant was formulated at the first commissioning. Some of equipments were replaced due to its life time. Relatively outdated for 20 years, the utilization of the model is not accomplished. This work has focused on the development of the performance analysis model of aforementioned power plant according to the most updated and current working conditions. The model is more appropriate and shows accuracy in its analysis.  Losses are detected and measures are introduced such that reduction in energy consumption, related cost, and also environment impacts can be anticipated.

Keywords: Performance analysis model, Power plant modeling, Target heat rate, Target efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
3146 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
3145 Simulation and Configuration of Hydrogen Assisted Renewable Energy Power System

Authors: V. Karri, W. K. Yap, J. Titchen

Abstract:

A renewable energy system discussed in this paper is a stand-alone wind-hydrogen system for a remote island in Australia. The analysis of an existing wind-diesel power system was performed. Simulation technique was used to model the power system currently employed on the island, and simulated different configurations of additional hydrogen energy system. This study aims to determine the suitable hydrogen integrated configuration to setting up the prototype system for the island, which helps to reduce the diesel consumption on the island. A set of configurations for the hydrogen system and associated parameters that consists of wind turbines, electrolysers, hydrogen internal combustion engines, and storage tanks has been purposed. The simulation analyses various configurations that perfectly balances the system to meet the demand on the island.

Keywords: Hydrogen power systems, hydrogen internal combustion engine, modeling and simulation of hydrogen power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
3144 Cost-Optimized SSB Transmitter with High Frequency Stability and Selectivity

Authors: J. P. Dubois

Abstract:

Single side band modulation is a widespread technique in communication with significant impact on communication technologies such as DSL modems and ATSC TV. Its widespread utilization is due to its bandwidth and power saving characteristics. In this paper, we present a new scheme for SSB signal generation which is cost efficient and enjoys superior characteristics in terms of frequency stability, selectivity, and robustness to noise. In the process, we develop novel Hilbert transform properties.

Keywords: Crystal filter, frequency drift, frequency mixing, Hilbert transform, phasing, selectivity, single side band AM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
3143 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
3142 Decreasing Power Consumption of a Medical E-textile

Authors: E. Shahhaidar

Abstract:

In this paper we present a novel design of a wearable electronic textile. After defining a special application, we used the specifications of some low power, tiny elements including sensors, microcontrollers, transceivers, and a fault tolerant special topology to have the most reliability as well as low power consumption and longer lifetime. We have considered two different conditions as normal and bodily critical conditions and set priorities for using different sensors in various conditions to have a longer effective lifetime.

Keywords: ECG, E-Textile, Fault Tolerance, Powerconsumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
3141 A Novel Three Phase Hybrid Unidirectional Rectifier for High Power Factor Applications

Authors: P. Nammalvar, P. Meganathan

Abstract:

This paper presents a hybrid three phase rectifier for high power factor application. This rectifier is composed by zero voltage transition (ZVT) and zero current transition (ZCT) boost converter with three phase diode bridge rectifier, in parallel with a six pulse three phase pulse width modulation (PWM) controlled rectifier. The proposed topology is capable of high power factor with DC output voltage regulation by providing sinusoidal input. Also, it increases the overall efficiency of the new hybrid rectifier to 94.56% and the total harmonic distortion of the hybrid structure varies from 0% to 16% at nominal output power. This topology was simulated in MATLAB/SIMULINK environment and the output waveforms presented with experimental result.

Keywords: Hybrid Rectifier, Total Harmonic Distortion, Power Quality, Pulse Width Modulation (PWM), Unidirectional Rectifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
3140 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: Distribution system, distribution transformer, power cable, technical losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
3139 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
3138 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Forecasting, Gaussian process, modeling, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
3137 Power System Damping Using Hierarchical Fuzzy Multi- Input Power System Stabilizer and Static VAR Compensator

Authors: Mohammad Hasan Raouf, Ebrahim Rasooli Anarmarzi, Hamid Lesani, Javad Olamaei

Abstract:

This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) and also Static Var Compensator (SVC) in multi-machine environment.The number of rules grows exponentially with the number of variables in a conventional fuzzy logic system. The proposed HFS method is developed to solve this problem. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. In fact, by using HFS the total number of involved rules increases only linearly with the number of input variables. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type Power system stabilizer (PSS). Phasor model of SVC is described and used in this paper. The performances of MPSS, Conventional power system stabilizer (CPSS), hierarchical Fuzzy Multi-input Power System Stabilizer (HFMPSS) and the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. By using digital simulations the comparative study is illustrated. It can be seen that the proposed PSS is performing satisfactorily within the whole range of disturbances.

Keywords: Power system stabilizer (PSS), hierarchical fuzzysystem (HFS), Static VAR compensator (SVC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
3136 A New Construction of 16-QAM Codewords with Low Peak Power

Authors: Jiaxiang Zhao

Abstract:

We present a novel construction of 16-QAM codewords of length n = 2k . The number of constructed codewords is 162×[4k-1×k-k+1] . When these constructed codewords are utilized as a code in OFDM systems, their peak-to-mean envelope power ratios (PMEPR) are bounded above by 3.6 . The principle of our scheme is illustrated with a four subcarrier example.

Keywords: Extended Rudin-Shapiro construction, orthogonal frequency division multiplexing (OFDM), peak-to-mean envelope power ratio (PMEPR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
3135 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach

Authors: Mohammad Rakibul Islam

Abstract:

Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.

Keywords: Error correcting code, RS, BCH, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
3134 Thermodynamic Evaluation of Coupling APR1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human population has placed increased demands on water supplies and spurred a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP, an IAEA sponsored program. DE-TOP has capabilities to analyze power generation systems coupled to desalination plants through various steam extraction positions, taking into consideration the isolation loop between the nuclear and the thermal desalination facilities (i.e., for radiological isolation).

Keywords: APR1400, Cogeneration, Desalination, DE-TOP, IAEA, MED, MED-TVC, MSF, RO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
3133 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679