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Abstract— We present a novel construction of 16-QAM code-
words of length n = 2°. The number of constructed codewords
i$16% x [4"~ 1 x k—k+1] . When these constructed codewords are
utilized as a codein OFDM systems, their peak-to-mean envelope
power ratios (PMEPR) are bounded above by 3.6. The principle
of our scheme is illustrated with a four subcarrier example.

Index Terms— Extended Rudin-Shapiro construction, orthog-

onal freguency divison multiplexing (OFDM), peak-to-mean
envelope power ratio (PMEPR).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
increasingly become an attractive technique for the high-bit-
rate transmission in a radio environment [6]. A principal
impediment to implementing OFDM is the high peak-to-mean
envelope power ratios (PMEPR) of the transmitted signals.
Given QAM (quadrature amplitude modulation) constellations
are widely used in OFDM, it is therefore imperative to study
the reduction of PMEPR, especially when symbols are chosen
from QAM constellations [3].

A variety of creative ways are proposed to reduce PMEPR
of OFDM signals [4], [2], [7], [12], [13]. Of these methods, a
promising one introduced in [2] uses block coding, where the
desired data codeword is embedded in a larger codeword and
only a subset of those larger codewords with low PMEPR
bounds is used. This method requires one to perform an
exhaustive search for identifying the codewords having low
PMEPR bounds in a code, and use a large lookup table
for encoding and decoding. For high QAM constellations,
these drawbacks could make the implementation of it dif-
ficult. One way to overcome these drawbacks is to use the
code constructed from Golay complementary codewords [5].
A generalization of Golay complementary codewords with
symbols chosen from 16-QAM is reported in [3] where
(16 +12k)(k!/2)4k+1 codewords of length 2* are constructed
with their PMEPR bound bounded above by 3.6 . However, for
bandwidth-efficient long codes, the code rate of this approach
drops dramatically.

In this paper, we present a novel scheme of systematically
constructing a set of OFDM signals with their subcarriers
modulated by the symbols chosen from a 16-QAM constel-
lation. A total 162 x [4%~! x k — k 4 1] distinct codewords of
length n = 2% having their PMEPRs bounded above by 3.6
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are constructed. In contrast with [3], our approach is based
on a novel way of extending the Rudin-Shapiro (RS) con-
struction (different from [8], [9]). Utilizing this extended RS
construction, we develop a procedure to construct a set of the
polynomials. The constructed polynomials are then exploited
to produce 16-QAM codewords with desired PMEPR bounds.

The paper is organized as follows. In Section II, we
introduce some notations, review the background materials
developed in [10], [11] and then formulate the problem. In
Section I1l, a four-carrier example is utilized to illustrate
our construction procedure. In Section 1V, the general case
is discussed. Proofs of some properties are contained in
Appendix | and Appendix II.

Il. PRELIMINARIES
The transmitted OFDM signal is the real part of

Se(t) = Y eqe PArUotmant, ®

m=1
where Af is an integer multiple of the OFDM symbol rate
and fy is the lowest carrier frequency. ¢ = (¢1,... ,¢,) is the

complex modulating vector whose entries are taken from a 16-
QAM constellation. An admissible modulating vector is called
a codeword and the ensemble of all the possible codewords
constitutes the code % . The mean power of S.(¢) during a
symbol period T is

1T "
RO DI

m=1

and the mean envelope power P,, (%) of a code % is

1 T
Pu@)= 13 [ OIS OFd S ple)lel?, @

cee’ 0 ce?

where p(c) is the probability of transmitting codeword c. The
peak-to-mean envelope power ratio (PMEPR) of a codeword
c is defined as

maxe(o,7) |Se(t)]?

PMEPR(c) 2 —p.@) 4

Our goal is to systematically construct a set of codewords
whose PMEPRs are bounded above by 3.6 where entries of
these codewords are modulated by a 16-QAM constellation.

Throughout our discussion, we impose the restriction n =
2" (k positive integer) and use C* £ C — {0} and S* 2 {z ¢
C : |z] = 1} where C denotes the set of complex numbers.
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Fig. 1. Construction of 16-QAM symbols from two QPSK symbols
A. The Extended Rudin-Shapiro Construction

The extended Rudin-Shapiro map ®*#7 introduced in [10],
[11] is defined as follows: Given any polynomial Q(z) 57
is

$2(Q(2)) 2 %[aQ(vz2)+ﬁz‘lQ(—7z2)]7 (5)

where we require o, 3 € C*, and v € S!.
In [11], we confine parameters o, 3, v € S*, develop a
procedure to construct P, of degree 2 and prove

|Pk(Z§CVk75k7’Yk7 7alvﬁl>’71)‘2
HPk(i'Z: Olkwﬂlkay--- 7a17ﬁ1771)‘2:2k+1yvz 651(6)

for any choices of oy, Bk, Yk, .- s1, 81,71 €St

I11. A SIMPLE EXAMPLE

A four-carrier OFDM signal of (1) where the entries of
(c1,c2,c3,cq) are chosen from a 16-QAM constellation is
used to illustrate our construction procedure. Instead of per-
forming an exhaustive search, as originally described in [2],
the procedure we present can efficiently identify a set of
codewords whose PMEPR bounds are bounded above by 3.6.

A. A construction procedure

Based on the procedure developed in [11] or our derivation
of Section D, we have a polynomial of degree 4 represented
as:

Py(z; a, B2, 72, o1, f1)
= yoana 2t + Y201 2% — g2 + Bofrz . (7

According to [1], any point on the 16-QAM constellation
can be written as

alp, v) = ael™/Ier 4+ bel™/ g (8)

This representation of a 16-QAM symbol in terms of two
QPSK symbols is shown in Fig. 1. Assuming all the 16-
QAM symbols are equiprobable, we require ¢ = 2/+/5 and
b = 1/+/5 for the constellation to have unit average energy.

Thus, for our example, it can be verified that P,, = 4.
In equation (7), we choose parameters as follows:

1= aelT/AEH 4 belT/AgY
Bi= aeﬁr/%ﬁ + bej”/4§’7

Qo= f’\ (9)
Ba= &
Vo= &r

where i, v, i, U, 7, k and \ are chosen from Z, .
Thus, equation (7) becomes

Py(z; oz, B2, 72, cu, B1)

= Yoaoa 22 oa1 2% — o127+ B2 512

:’Y2a2(a@jﬂ/4f“+bejﬂ/4fy)z4+7252(aejﬂ/élfu‘b@jw/%y)23
_a2(aejw/4£ﬂ+bej7r/4§ﬂ)22+ﬁ2(aej‘rr/4fﬂ+bej7r/4€17)z

= f”‘fA(aej”/4£“+bej”/4§”)z4+£”§T(aej”/4£"+bej”/4§”)z3
+£2é~)\(aejrr/4§ﬂ+bejﬂ/4£f/)22+£7'(aejw/4£ﬂ+bej7r/4£ﬂ)z

= ej”/4§”+'“+’\(a+b§”7“)z4 + ej”/‘lf’”“’*T(a+b§”7”)z3
+e-7"/4§ﬁ+A+2(a+b§ﬁf‘~‘)z2+e-7‘”/4§[‘+7(a—l—b{ﬁfﬂ)z. (10)

We define Q,; as the set of all codewords generated by

equation (10) when parameters p, v, i, 7, 7, x and A run
over Zy, i.e.,
6j7'r/4§u+n+>\(a+b€u—u) T
ej7r/4€,u.+n+‘r(a+b§uf,u)
Qo1 = U ejrr/4§ﬂ+/\+2(a+b£’7*ﬂ)
/:L¢V€Z4

ez | L e/ (o + bR
T,K,\NELy

(11

We can also choose the parameters of (7) in a way differ-
ent from (9) to produce more codewords with low PMEPR
bounds. Further discussion on this issue, especially, on how
to tuning parameter ~ is presented in another paper.
Here, another choice for the set of parameters in (7) is
1= &
pr= &
ag=aelT/AEH 4 beIT/AeY (12)
Bo=ael™/A¢R 4 peim™/4g?
Y= &"
where o, v, i, 7, 7, k and X are chosen from Z, . Substitut-
ing (12) for parameters in (7), we similarly define Qs 5, i.e.,

Qy = Qo UQ2,2~ (13)

B. PMEPR bounds

Now, we compute PMEPR upper bounds for the codewords
of (13). For this purpose, we first prove the following lemma.
Lemma L If |as| = |B2] and 42 € S, then the polynomial
(7) satisfies

max [Py (z; az, B2, 2, a1, f1) [P <4(lan [+ 6% B> (14)

The proof of Lemma 1 is contained in Appendix I.
Corollary 1: If || = |81] and 2 € S1, then the polynomial
(7) satisfies

iréasﬂpﬂz; az, Bz, 72, a1, B1) [ <4(laz [+ ) |61 7. (15)

The proof of this corollary is similar to Lemma 1.
Because of

|ae?™/AgH4-bel T | = |7 (0t bEH) | = |artbEY | (16)

and (recalling a = 2/+/5, b=1/v/5 and &€ = ¢73)
la+b2=18, if i=0
la]2 + b2 =1, if i€ {1,3} , (17)
la —b2 =02, if i=2
in view of (9), it follows

laa|? +|B1)% € {3.6, 2.8, 2.0, 1.2, 0.4} . (18)

Utilizing (18) and (9), we can therefore derive

la+ 0" =
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(loaP+18:)B* = (Jea*+|B:*) <36 (19)

which and Lemma 1 yield

?é%’HPQ(Z;027527%7041751”2 < 36x4. (20)

Recalling P,, = 4, we prove

PMEPR(c) < 36 (21)

for every codeword ¢ € Qg ; .

Utilizing Corollary 1, we can similarly prove (21) for every
codeword ¢ € Q3 5. In view of (13), we therefore prove (21)
for every codeword ¢ € Q.

C. The size of 2,

To compute the size of 9, we first find the sizes of Qs ;,
Qg0 and Q21() 2,2, and then obtain the size of Q.

Property 1. When a1, 31, as, B2 and ~, defined by either
(9) or (12) are used, the sizes of Q3 1, Q22 and Q31 () Q22
are respectively 162 x 4, 162 x 4 and 162

Proof: In view of (7), every codeword of 2, can be expressed
as

— B B2ph) (22)

where a1, 51, as, B2 and v, are from either (9) or (12).
Case 1. Compute the size of €, ; . In this case, the parameters
defined in (9) are used, which suggests that both «; and
(1 are points on the 16-QAM constellation (Fig. 1) and the
rest parameters are selected from a 4-PSK constellation, i.e.,
{1, -1,j, —j}. Rewriting (22) as az(y2n “/2%061 -
51 ﬁz [31) we observe that the first, third and fourth entry
can mdependently be changed through «a; , 5; and 52 respec-
tively. Thus, every choice of ay, 4, and ﬁg ylelds a distinct
codeword in Qs ;. Since there are 16 ch0|ces for each of oy
and (; and 4 choices for %, the size of s, is equal to
162 x 4.

Case 2: Compute the size of Q5 5 . In this case, the parameters
defined in (12) are used. A similar argument as Case 1 can
prove that the size of Q5 is equal to 162 x 4 too.

Case 3: To compute the size of Q51 ()22, We assume

c=(rea1as Y2200

(Yee10 Y2Boar —aofy Baf)=(F261da F2P281 —2fr F2/51(23)

where ay, 81, a2, B2 and , represent the parameters defined
by (9) but &1, B1, az, B2 and 44 are the parameters defined
by (12). The equation (23) suggests

Yo = Fal1li (24)
Yofaar = A2f20q. (25)
Dividing (24) by (25), we obtain
QbYesYe’) Qy a1ty Gy

= —=—"——"= 26

Y2201 B2 Aufadn  fa 29)

Since ay and B are defined by (9), we have O‘—j = &M for
some p € Z4 . Combining this with (26), we obtain

dy = &'Bs. (27

Now, we are ready to estimate the size of Q91 () Q2,2

e When |a»| > 1, for each fixed &, there are only 4 choices
of 3, (Fig. 1) satisfying (27). Since we have 4 choices for
each of as, the total number of choices of these parameters
satisfying (27) are 4 x 4 = 16.

e When |ay| < 1, a similar argument as |&q| > 1 yields
another 16 possible choices of parameters.
e When |a2| = 1, there are 8 distinct choices for each of a.
or ﬁ}. For each choice of as, however, there only 4 choices
of 3, (Fig. 1) satisfying (27) . Thus, there are total 8 x 4 = 32
choices of these parameters satisfying (27).

Combining Case 1-Case 3, we obtain 16 + 16 + 32 = 64
codewords satisfying (27). On the other hand, rewriting the
codewords in Q3o as ﬁl(’}/Q OéQ 7262 — Gip 62), we

observe that for each pair of OéQ and (3, satlsfying (27), there
are 4 choices of 4. Therefore, the size of Qo1 Qo2 IS
4x64 = 256. In view of (13) and results from Case 1-Case 3,
the number codewords in s is at least 162 x4+162x4—256 =
162 x (4 x 2 —1) = 1792.

D. Derivation of Py(z; az, B2, 72, a1, B1)

Py(z; az, B2, 72, a1, B1) can be derived through the
following 3 steps.
Step 1: For the sake of consistence, we choose oy = Gy =
Yo = 1. Start with Py(z) = z.
Step 2: Substituting Py(z) = z for Q(z) in (5), we compute
Pi(z5 01, Br, 1) £ U (By(2))

:% [a1Po(m12%) + iz ™ Po(—m27)]
- % [e1712® + Brz™ (—12%)]
:alz2_ﬁlz7 (28)

where both a; and 3; belong to C*. Since P; is independent
of v1, we use Py (z; g, 1) to represent P (z; a1, B1,71) from
now on. Utilizing (28), for all z € S*, we compute

‘Pl(z§ aq, 51)|2 + |P1(—Z§ ay, ﬂ1)|2
=Jan2? = Brzf? + faa (=2) — By (~2)

= (2% = fr2) (a1 2% — pr2)"+ (01122+ﬁ1z)(alz2+ Br2)*

=l 2?|? — Brz(a12?)* — (Br2)*aq 2 + |B12]2
+loa 2?2 + Brz(ea2?)* + (Brz) onz® + Bz
=2l |22 + 2|61 | 21* = 2(laa|* + |81 ) (29)

for all z € S'. From (29), it follows
?é%’fﬂpl(zé a1, B +[Pi(=2; o1, )}

=2(Ja1* +[51]*) (30)

for any 2z € S! and for any choice of oy, 51 € C*.

Step 3: As Step 2, substituting Py (z; ay, 81, 1) = a12% —
B1z for Q(z) in (5), we compute

P2(Z:, Oé27527’)/27 a17ﬁ1)

2 92 (Py(z; o1, B1))

_ (o Pr (7222, a1, B1) + Boz ™t Pi(—722?, a1, B1)]
2
_ [042(041(7222)2—51%22)4'522_1(al(—7222)2—51(—“/222))}

Y2
1 .
Z%[0410427324*02517222+ﬁ2(&1’Y§Zd+5172z)]
=a1as72z! + 12722 — asfi2? + Bifaz . (31)

for any choices of oy, 2, a1 and 31 € C* and ~, in S*.
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IV. 16-QAM CODEWORDS OF LENGTH n = 2F HAVING
Low PMEPR BOUNDS

In this section, we extend the procedure developed in

previous section to construct 16-QAM codewords of length
n = 2% with low PMEPR bounds. Our procedure is proceeded
in the following steps:
Step 1. For k = 2, as shown in previous section,
we construct polynomial P,. Then, we define Q5 (equa-
tion (13)) comprising of all the codewords produced by
Py(z; ag, B2, v2, a1, $1) when the parameters defined by
(9) and (12) are employed. We show that the PMEPR bounds
for all the codewords of €, are bounded above by 3.6.
Furthermore, we prove that the size of Q5 is 162 x (4x2—1).
Step 2: For k = [, assume that we have constructed polyno-
mial P, of degree 2°.

Define the following [ sets of the parameters
al7ﬁla’yla'"70527/827’7270517/81 as
o =M
ap = Q(:U‘v l/) gl i 5%2
o 2 =
pr = q(1,v) _ ¢m
¢ B =¢
2= é- Yo = 6"21
B2 = 57.1 .
(1) 72 =¢&" NN : (32)
. a1 = gAl—l
o = £ gzl
b= J
Y = 6”1—1 Qg - q(lf’f)
B =alp,0)
noo=En

where W, v, ,l], Uy Tiy K1y My ovvy Ti—1, ki—1 and \;_q are
chosen from Z,4 . As done in (11), we replace the parameters of
Pi(z; 00, By s -5 2, B2, v2, a1, Br) with (i) of (32)
(1 <4 < 1) and then define €2;; as the set comprising of
all the codewords produced by this polynomial. The set €; is
defined as

l
Ql == U Ql,i . (33)
=1

Induction also assumes that the sizes of ©;, (1 < ¢ <) and
) respectively are 162 x 4'=! and 162 x (4~! x| —1+1).
Step 3: For k = I+1, let P, represent the polynomial of degree
n = 2! constructed in Step 2. Employing (5), we construct the
polynomial of degree n = 2!+ as follows:

Pii(zs augrs Bigrs Yigrs --0 5 @2, B2, 72, a1, B1)

1
o [ Pi(vi12%) + Bz ' Pi(=y4127)] - (34)
[+1

Lemma 2: If v; € St for all 4 with 2 <4 <1+1 and |oy| =
|3;] forall ¢ (1 <4 <1+1) but some ig with 1 <ig <141,
then the polynomial (34) satisfies

2
géas}ﬂplﬂ(z; Qi1 Byt Vit oo 5 a2, B2, v2, a1, B1)

+1
§2l+1(|ai0|2+|ﬁiu‘2) H ‘Bl|2 (35)

i=1,i#i0

The proof of Lemma 2 is contained in Appendix II.

Define the following | + 1 sets of the parameters
1, Bt 1, Vit1, - - - @2, B2, 72, 1, B1 S

o =&
ar = q(p,v) o=
B = alip) o =
ay = €A1 ﬁ2 = 5
B =& 72 =&
ne e =& [+1 : 36
(1) _ (1+1) o —en (36)
OCH»I = f)\l ﬁl z 23171
B =& ll — o)
Y1 = €Y S
/81+1 = Q(M7 V)
Vg1 = M

where p, v, i, ¥, 71, K1, M\, -.., 71, Kk and \; are
chosen from Z,. As done in (11), we replace the parame-
tersof Py1(z; cugrs By, Mgty -+ @2, Bo, Y2, aa, fBr)
with (7) of (36) (1 < ¢ < {+41) and then define €, ; as the set
comprising of all the codewords produced by this polynomial.

The set €1 is defined as
I+1

Q1 = Uﬂl+l,i~ (37)
=1

A. PMEPR bounds

We first show that the PMEPR bounds of the codewords in
Q41,1 are bounded above by 3.6. Recalling (17), we have

log |+ |31? € {3.6, 2.8, 2.0, 1.2, 0.4}. (38)

Utilizing (35) of Lemma 2 and noticing 3; € S* for all i
(2<i<Il+41), we prove

Hé?l(leH(Z; Wty Biat s Va1 s - 2, Boy Y2, an, 1)
z

I+1

<2 (Jon |81 ) [T 18:]% < 27 x 3.6. (39)
=2

Since the codewords of €;,; has length n = 2!*!, we have

P,, = 21 which yields

PMEPR(c) < 3.6 (40)

for every codeword ¢ € €4, ;. Utilizing Lemma 2, we can
follow a similar argument to prove (40) for any codeword in
Q41 (1 <i<141). Thus, in view of (37), it follows that
equation is valid for any codeword in ;41 .

B. The size of ;11

To estimate the size of 2,1, we first need to prove the
following property.

Property 2. The coefficients of the

Pk(z;akvﬁkwﬁfkv"'7a27ﬁ27’y27a17ﬁ1)
. ok ok _q N
with 2% and z are respectively

f(’Yk PRI 72) Hi’czl Q; h(’}/k PRI 72)/816 HfC:_ll (€7 (41)
where f and h both represent products of the powers of ~;
@2<i<k).

Proof: We proceed our proof through induction.

e For k = 2, in view of (7), Property 2 is valid for the
coefficients of P, associated with z* and 22 .

polynomial
associated
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e For £ = [, assume that the coefficients of
PI(Z, 0217 ﬂl7fylk? ey Qg 627 Y2, 01, 51) aSSOCiated
with 22" and 2% ~! are respectively

f(VlwnﬂYQ)H 19 by, e )ﬁlH 1042 (42)

where f and h are defined as stated in Property 2.

e For k = [ + 1, from equation (34), we see that the
coefficients of P, ; associated with 22" and 22"~ are respec-
tively equal to the leading coefficients of MPZ('yleQ) and

ﬂl“P( Yiw12%). Thus, utilizing the mductlon assumption
ﬁ) we compute the coefficients of P, associated with
and 221 respectively as follows:

I+1
:;Ll ’Yz+1f(’7l7 e ,’YQ)HZ 1 Oéz—f(’YHl» ) [ i
L,
7’35111 ()2 f (s 2 T = (g1, - - > 72) Bl Loy i

This completes our proof.

Now, we are ready to estimate the size of ;1. To do that,
we first prove the following property.
Property 3 When the parameters of
Pii(z; aiers Bigrs Yigrs oo a2, B2, v2, a1, 1) are
replaced with the numbers from (i) of (36) (1 <i <11+ 1),
the sizes of €, ; and (Ui:1 Q41,:) () Q41,141 respectively
are 162 x 4! and 162 .
Proof: We proceed with our proof through the following cases.
Case 1: Compute the size of Q;1,; (1 < ¢ < 1). In this
case, the set (i) of (36) is selected, which suggests that %
belongs to {1, -1, j, —j}. In (34), we see that a choice
of {P, ﬂl“ -} ylelds a distinct P, (A similar proof for the
parameters chosen from a BPSK constellation can be found
in [10]). From the induction assumption of Step 2, there are
162 x 41=1 distinct P, (the size of ; ;) which suggests that the
number of codewords in €41 ; is 162 x 471 x 4 = 162 x 4.
Case 2: Compute the size of ;41,41 . In this case, the set
(I+1) of (36) is selected, which implies that all the parameters
but o; 1 and (4, are selected from a 4-PSK constellation.
When all the parameters chosen from a 4-PSK constellation,
following the same induction argument of Step 1-Step 3 or
utilizing a similar argument in [10], we can prove that there
are 4!+ distinct P, of degree 2¢ . In addition, a stralghtforward
argument can show that when the argument of “1 is not 7
a choice of {P;, 3141, a;41} yields a dlstlnct Pz+1 From
Fig. 1, for each choice of «;1 , there are 4 choices of 3, that
meet this requirement. Thus, there are 4!+ x 16 x 4 = 162 x 4!
choices of {P,, 511, ay41} which yield distinct Py, . The
size of Q141 is 162 x 44,
Case 3: Compute the size of (Uli:1 Q1) Q1,41 - For
any codeword of (Uﬁ:1 Q1,:) N QUs1,041 . We have

-Pl+l(z;al+1vﬂl+17’yl+17' . '7a27ﬂ27727a1’ 51)
= P1(z; Gugr, Bis1s Yigts - -5 G2, P2, 2, 6, f1)(44)

where a;, 8,7 (1 < i <1+ 1) are from (¢) of (36) (1 <
t<lyanda;, 3, % (1 <i<I+41)are from (I41) of (36).
Equation (44) suggests that the individual summands of these
two polynomials must be equal. In particular, the coefficients
associated with 22" and 22" must be equal, which, in view
of (41) of Property 2, yields

International Scholarly and Scientific Research & Innovation 1(11) 2007
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I+1 I+1
FOuens sy [ e = fGusns o 32) [Ta @5)
z*ll =1 l
h(yesns - 92)Bi] [ = BGigas - 32) B [ ] @ (46)
=1 =1
For these parameters are nonzero, dividing (45) by (46) renders
foe ) e fGrn. ) LD
h(Yists - 92) B Ty @i WA, F2) B Ty @
Simplifying this equation, we obtain (47)
SO, o fGie, - 92) a”1(48)
h(vis1s -5 2) Bt P41y -5 72) B

(43) Since parameters ;, ¥;, y+1 and G are all chosen from

a 4 constellation (not from (I + 1) of (36)), and functions f
and g are products of powers of v; (2 < <[+ 1), we have

fngt, - ve) e f(Figas .- 92) .
RAY C{1,-1, 4,5} (49
h(Vig1s -5 72) B h(’w+17~~-7’72)} L 0 JH49)
Combining (48)—(49), it follows that
a1 = B, pEZy. (50)

Clearly, equation (50) is similar to (27). Therefore, an argu-
ment similar to the one for computing the size of Q51 Q2,2
proves that the size of (Uﬁ;1 Qg1.4) N Qug1041 i 162 Thus,
the number of distinct codewords contained in €; is at least
162 x4 x (14+1)—1621 =162 x 4 x 1+ 1) —1].

V. CONCLUSION

We present a novel construction of 16-QAM codewords
of length n = 2*. The number of constructed codewords is
162 x [4*=1 x k — k+1]. When these constructed codewords
are utilized as a code in OFDM systems, their peak-to-mean
envelope power ratios (PMEPR) are bounded above by 3.6.
The principle of our scheme is illustrated with a four subcarrier
example.

APPENDIX |
PROOF OF LEMMA 1

The proof of Lemma 1: From (5) and ~, € S?, it follows

|Pa(z5 aa, B2, Y2, 01, B1) |+ | Pa(—2 5 a2, B2, 2, a1, Bu)°

o Pi(722? ;s ay, 1)+ Baz P (=227 5 o, Br) P

B |’Yz|

;al,ﬁl) 522
[72]

say, Bu))?

+|0¢2Pl(72(—»2)2 Pi(—ya(=2)% 01, 81)°

=[as|*| P1 (722
o2 P (7227 o, B1)[Boz  PL(—722% 5 o, B1)]
+HazPi (1227 a1, B1)]*Baz™ lPl(—’YzZ ;ar, Br)
+B2|? 27 Py (=227 a, B1)|PHea || Pr (2275 o, Br) P
—aa Py (7225, Br)[Bez” ' Pi(=722% s on, )]
—looPy(y22%; a1, Bu)]* oz Pr(—7227 5 ax, Br)
HBa P27 Pi(—y22% 5 an s B)

=2|az[*| P (722% o1, B1) 1216227 || Py (—722% o, B1)*(51)

By requiring |as| = | 82|, equation (51) becomes

2|3 (|P1 (72275 an, B1) [P+ Pr (=227 a1, B1)7) . (52)
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On the other hand, since z € S and v, € S* suggest 1222 €  becomes

St from (29) it follows 2 (1P (4122 + | P(=v412D)1?) 1B |? - (59)
Py, )PP (—22% a, B)P=2( P4, B9 otcing tht o] = 3 and o € 81 G € (2.0 1)
V ze S . Combining (52) and (53), we prove and 7412 € S' for any 2 € S*, we apply the induction
assumption (57) of Step 2 to (59) and obtain
|Pa(2; a2, B2, 72, 1, B1) [+ Pa(—2 5 @2, B2, 72, 1, B1) ption (57) P (59) !
= 4(|en *+1611) |5 (54) [Pu(i412%) P+ Po(—ni122)P=2 (o [+ B D) [ 18:17, V= € S*
R =2
which suggests (60)
ggmax‘&(z' 0. Ba e o, B Combining (60) and (59), we prove that
ze81 o |P1 (25 sty Bt Vit - 1, B1) 2
= géas)l( {‘P2(2§ ag, 62 y V25 O1 ﬁ1)|2 +‘Pl+1(fz; al+1,ﬂl+1,'yl+1, cens Ozl,ﬁl)‘z
l
Py(—z: 2
‘H 22( Z,a§7ﬁ227727(l1>ﬁl)‘ } :21+1(|a1|2+|ﬂ1|2)H|ﬂ1ﬂ‘2|ﬁl+1|2
= 4d(la1]® + [B1]7)[B2] (55) i=2
APPENDIX I 41
PROOF OF LEMMA 2 =2 (laa | + 8P [ [ 1817 (61)
Without loss of generality, we use induction to prove the _ =2
case where the parameters are chosen from (1) of (36). which reno;%s (x: 5 8P
Step 1: For k = 2, we have proved that when |as| = |3,] and T INE S Q141 Pl M1, A1, 1

o € S, equation (54) is valid in Appendix I, i.e.

|2
‘PQ(Z; a27ﬁ27727a17ﬁ1)‘2+‘P2(_2; a27ﬂ2>’72aa1751)|2

< Hé%)l(“Pl-H(Z? iyt Bivts Vet o1, B1)
z

2
2 IR P (=25 crgr, Bigrs Vi, an, B1)
— (151 Bl (56) ans B AP}
St_eﬁ 2: For k < 1, assume that when |a;| = |8;] and ; € S* <2 (a4 18 [ ] 18 (62)
with ¢ € {2, ..., I}, we have ple
. 2
[Pu(=z3 s By -5 2, B2, 72, 1, )| for all z € S1 and the parameters chosen from (1) of (36).
2
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