Search results for: Fault detection and Isolation
1237 Metamorphism, Formal Grammars and Undecidable Code Mutation
Authors: Eric Filiol
Abstract:
This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.
Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24291236 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121235 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector
Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy
Abstract:
In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.
Keywords: 4-quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency, ATmega 32 microcontrollers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341234 Detecting the Edge of Multiple Images in Parallel
Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar
Abstract:
Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.Keywords: Edge detection, multicore, GPU, openCL, MPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391233 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.
Keywords: Image detection, forgery image, copy-paste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191232 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.
Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32751231 Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor
Authors: Hsiao-Wei Wang, Jung-Tang Huang, Chun-Chiang Lin
Abstract:
Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.
Keywords: Aptamers, CNTFET, Mycobacterium tuberculosis, early detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991230 Improving Fault Resilience and Reconstruction of Overlay Multicast Tree Using Leaving Time of Participants
Authors: Bhed Bahadur Bista
Abstract:
Network layer multicast, i.e. IP multicast, even after many years of research, development and standardization, is not deployed in large scale due to both technical (e.g. upgrading of routers) and political (e.g. policy making and negotiation) issues. Researchers looked for alternatives and proposed application/overlay multicast where multicast functions are handled by end hosts, not network layer routers. Member hosts wishing to receive multicast data form a multicast delivery tree. The intermediate hosts in the tree act as routers also, i.e. they forward data to the lower hosts in the tree. Unlike IP multicast, where a router cannot leave the tree until all members below it leave, in overlay multicast any member can leave the tree at any time thus disjoining the tree and disrupting the data dissemination. All the disrupted hosts have to rejoin the tree. This characteristic of the overlay multicast causes multicast tree unstable, data loss and rejoin overhead. In this paper, we propose that each node sets its leaving time from the tree and sends join request to a number of nodes in the tree. The nodes in the tree will reject the request if their leaving time is earlier than the requesting node otherwise they will accept the request. The node can join at one of the accepting nodes. This makes the tree more stable as the nodes will join the tree according to their leaving time, earliest leaving time node being at the leaf of the tree. Some intermediate nodes may not follow their leaving time and leave earlier than their leaving time thus disrupting the tree. For this, we propose a proactive recovery mechanism so that disrupted nodes can rejoin the tree at predetermined nodes immediately. We have shown by simulation that there is less overhead when joining the multicast tree and the recovery time of the disrupted nodes is much less than the previous works. KeywordsKeywords: Network layer multicast, Fault Resilience, IP multicast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13871229 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS
Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao
Abstract:
The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.
Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571228 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique
Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong
Abstract:
Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.
Keywords: Glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10871227 Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection
Authors: Florin Gorunescu
Abstract:
Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.Keywords: Endoscopic ultrasound elastography, exploratorydata analysis, neural networks, non-invasive cancer detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671226 BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions
Authors: Sheetal Chavan, P. J. Kulkarni, Vivek Shanbhag
Abstract:
Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.Keywords: Dependence, Early solution, Finite State Automata, Grammar, Late solution, Parser State Transition Diagram, StaticProgram Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101225 Comparison of Multi-User Detectors of DS-CDMA System
Authors: Kavita Khairnar, Shikha Nema
Abstract:
DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.Keywords: Cross Correlation Matrix, MAI, Multi-UserDetection, Multipath Effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21131224 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam
Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin
Abstract:
Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.
Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32081223 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811222 A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide
Authors: R. F. Ajayi, U. Sidwaba, U. Feleni, S. F. Douman, E. Nxusani, L. Wilson, C. Rassie, O. Tovide, P. G. L. Baker, S. L. Vilakazi, R. Tshikhudo, E. I. Iwuoha
Abstract:
Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is, therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2µM to 16µM revealing a limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The Michaelis-Menten parameters; KM, KM app and IMAX were calculated to be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a nanobiosensor suitable for use in serum.
Keywords: Cytochrome P450-2E1, Disuccinimidyl octanedioate, Pyrazinamide, Tuberculosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241221 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards
Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee
Abstract:
In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.Keywords: Text detection, edge profile, signboard image, fuzzy clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261220 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8501219 Industrial Compressor Anti-Surge Computer Control
Authors: Ventzas Dimitrios, Petropoulos George
Abstract:
The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89651218 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection
Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid
Abstract:
Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.
Keywords: Features extraction, image segmentation, medical images, tumour detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5881217 Optical Fiber Sensor for Detection of Carbon Nanotubes
Authors: C. I. L. Justino, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte
Abstract:
This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations.Keywords: Optical fiber sensor, single-walled carbon nanotubes, SDS calibration model, UV-Vis spectroscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17041216 Traffic Density Measurement by Automatic Detection of Vehicles Using Gradient Vectors from Aerial Images
Authors: Saman Ghaffarian, Ilgın Gökasar
Abstract:
This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.Keywords: Aerial images, intelligent transportation systems, traffic density measurement, vehicle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29351215 Digital Image Forensics: Discovering the History of Digital Images
Authors: Gurinder Singh, Kulbir Singh
Abstract:
Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.
Keywords: Computer forensics, multimedia forensics, image ballistics, camera source identification, forgery detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161214 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance
Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee
Abstract:
The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28791213 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yilmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.
Keywords: HIC, lysozyme, nanosensor, QCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711212 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System
Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock
Abstract:
The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription- Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable to those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the COBAS assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the COBAS assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.Keywords: HIV viral load, Aptima, Roche, Panther system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32171211 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.
Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511210 Copy-Move Image Forgery Detection in Virtual Electrostatic Field
Authors: Michael Zimba, Darlison Nyirenda
Abstract:
A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.
Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161209 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection
Authors: Taiwo. M. Akinmuyisitan, John Cosmas
Abstract:
This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.
Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841208 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.
Keywords: Data science, fraud detection, machine learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771