Search results for: high performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10267

Search results for: high performance

3127 Construction Procedures Evaluation of Three Adjacent Tunnels and Excavation Step Effects

Authors: M. Mahdi, N. Shariatmadari

Abstract:

Since, both the relative position of tunnels and the construction procedure affect the soil movement and internal forces in the lining, it is of major concern to study the influence of these factors on the tunnel design. Construction procedures of tunnels have considerable effects on the magnitude of surface movements and lining stresses. This paper describes numerical analysis of construction procedure of a three adjacent shallow tunnels at high groundwater levels using the commercial finite difference software (FLAC-3D). The aim of this study is to determinate the most suitable construction procedure for the three tunnels and the optimum excavation step in Tehran Metro tunnels in order to optimize the surface settlements and lining stresses.

Keywords: Shallow tunnel, multiple tunnels, construction procedure, surface movement, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
3126 Identity Management in Virtual Worlds Based on Biometrics Watermarking

Authors: S. Bader, N. Essoukri Ben Amara

Abstract:

With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.

Keywords: Identity management, security, biometrics authentication and authorization, avatar, virtual world.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
3125 Experimental Study of Submersible Jet on Flow Hydraulic Parameters

Authors: Mohsen Solimani Babarsad, Habib Musavi Jahromi

Abstract:

Behavior of turbulent jet is relying on jet parameters, environmental and geometric parameters. In this research, it has attempt to Study effect of jet parameters of internal angle on maximum effective length and velocity on centerline from nozzle experimentally. Toward this end, four internal angles 30, 45, 60 and 90-degree are considered for this study in a flume with 600cm as long, 100cm as high and 150cm in width. Various discharges were used to evaluate effective length for a wide range of densimetric Froude numbers F0, from 17.9 to 39.4 that is defined at the nozzle. As a result, It is revealed that both velocity on centerline and effective length decreases when nozzle angle decreased from 90° to 30°. The results show that, for all range of Fr0 the Um/U0 ratio for nozzle with α=90° on centerline increases 20% - 27% than nozzle with α=30° that has lowest velocity on centerline than other nozzle.

Keywords: Turbulent jet, velocity, effective length, Froude number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
3124 Analyzing the Effects of Adding Bitcoin to Portfolio

Authors: Shashwat Gangwal

Abstract:

This paper analyses the effect of adding Bitcoin, to the portfolio (stocks, bonds, Baltic index, MXEF, gold, real estate and crude oil) of an international investor by using daily data available from 2nd of July, 2010 to 2nd of August, 2016. We conclude that adding Bitcoin to portfolio, over the course of the considered period, always yielded a higher Sharpe ratio. This means that Bitcoin’s returns offset its high volatility. This paper, recognizing the fact that Bitcoin is a relatively new asset class, gives the readers a basic idea about the working of the virtual currency, the increasing number developments in the financial industry revolving around it, its unique features and the detailed look into its continuously growing acceptance across different fronts (Banks, Merchants and Countries) globally. We also construct optimal portfolios to reflect the highly lucrative and largely unexplored opportunities associated with investment in Bitcoin.

Keywords: Portfolio management, Bitcoin, optimization, Sharpe ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6141
3123 Overcoming the Obstacles to Green Campus Implementation in Indonesia

Authors: Mia Wimala, Emma Akmalah, Ira Irawati, M. Rangga Sururi

Abstract:

One way that has been aggressively implemented in creating a sustainable environment nowadays is through the implementation of green building concept. In order to ensure the success of its implementation, the support and initiation from educational institutions, especially higher education institutions are indispensable. This research was conducted to figure out the obstacles restraining the success of green campus implementation in Indonesia, as well as to propose strategies to overcome those obstacles. The data presented in this paper are mainly derived from interview and questionnaire distributed randomly to the staffs and students in 10 (ten) major institutions around Jakarta and West Java area. The data were further analyzed using ANOVA and SWOT analysis. According to 182 respondents, it is found that resistance to change, inadequate knowledge, information and understanding, no penalty for any environmental violation, lack of reward for green campus practices, lack of stringent regulations/laws, lack of management commitment, insufficient funds are the obstacles to the green campus movement in Indonesia. In addition, out of 6 criteria considered in UI GreenMetric World Ranking, education was the only criteria that had no significant difference between public and private universities in generating the green campus performance. The work concludes with recommendation of strategies to improve the implementation of green campus in the future.

Keywords: Green campus, obstacles, sustainable, higher education institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3122 A Comparative Study on Achievement Motivation and Sports Competition Anxiety among the Students of Different Tier of Academic Hierarchy

Authors: Nitai Biswas, Prasenjit Kapas, Arumay Jana, Asish Paul

Abstract:

Introduction: Motivation is basic drive for all kinds of action. It has direct influence on academic achievement and sports performance that builds urge to incentive values of success. In other words, it can be defined as the need for success to attain excellence. Anxiety in pre competition especially in sports formulates positive inward settings in mind to overcome the challenge. There is a tendency to perceive competitive situations as some threatening issues and to respond them with feelings of apprehension and tension. Aim: Aim of the study was to compare the achievement motivation and competition anxiety among three different classes of students. Methods and Materials: To conduct the study the researcher has taken 131 male subjects from three different classes as Extra Department, Bachelor of Physical Education-I and Master of Physical EducationII, aged 19-28 years. Achievement motivation and sports competition anxiety were measured by the questionnaire. To analyze the data mean, standard deviation for each parameter as descriptive statistics and one way analysis of variance as inferential statistics were employed. Results: From the result of the study in achievement motivation (p ≥ 0.05) and competition anxiety (p ≥ 0.05) no significant differences were found among the said three groups. Conclusion: The study concluded that all three groups had almost the same state of achievement motivation and sports competition anxiety.

Keywords: Anxiety, sports psychology, sports competition anxiety, achievement motivation, academic hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
3121 A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm

Authors: Min-Shiang Hwang, Cheng-Chi Lee, Shiang-Feng Tzeng

Abstract:

A new secure knapsack cryptosystem based on the Merkle-Hellman public key cryptosystem will be proposed in this paper. Although it is common sense that when the density is low, the knapsack cryptosystem turns vulnerable to the low-density attack. The density d of a secure knapsack cryptosystem must be larger than 0.9408 to avoid low-density attack. In this paper, we investigate a new Permutation Combination Algorithm. By exploiting this algorithm, we shall propose a novel knapsack public-key cryptosystem. Our proposed scheme can enjoy a high density to avoid the low-density attack. The density d can also exceed 0.9408 to avoid the low-density attack.

Keywords: Public key, Knapsack problem, Knapsack cryptosystem, low-density attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
3120 Mixtures of Monotone Networks for Prediction

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
3119 Review and Evaluation of Trending Canonical Correlation Analyses-Based Brain-Computer Interface Methods

Authors: Bayar Shahab

Abstract:

The fast development of technology that has advanced neuroscience and human interaction with computers has enabled solutions to various problems and issues of this new era. The Brain-Computer Interface (BCI) has opened the door to several new research areas and have been able to provide solutions to critical and vital issues such as supporting a paralyzed patient to interact with the outside world, controlling a robot arm, playing games in VR with the brain, driving a wheelchair. This review presents the state-of-the-art methods and improvements of canonical correlation analyses (CCA), an SSVEP-based BCI method. These are the methods used to extract EEG signal features or, to be said differently, the features of interest that we are looking for in the EEG analyses. Each of the methods from oldest to newest has been discussed while comparing their advantages and disadvantages. This would create a great context and help researchers understand the most state-of-the-art methods available in this field, their pros and cons, and their mathematical representations and usage. This work makes a vital contribution to the existing field of study. It differs from other similar recently published works by providing the following: (1) stating most of the main methods used in this field in a hierarchical way, (2) explaining the pros and cons of each method and their performance, (3) presenting the gaps that exist at the end of each method that can improve the understanding and open doors to new researches or improvements. 

Keywords: BCI, CCA, SSVEP, EEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
3118 Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum

Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta

Abstract:

Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.

Keywords: Flashover, SEM, Electron Bombardment, Electric Field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
3117 Hybrid Authentication Scheme for Graphical Password Using QR Code and Integrated Sound Signature

Authors: Salim Istyaq, Mohammad Sarosh Umar

Abstract:

Today, the mankind is in the stage of development, every day comes with new proposal of technology, in order to secure these types of technology, we also prepare high yielding security modules to conserve these resources. The capacity of human brain to recognize anything is far more than any species; this is all due to our developing cycle of curiosity. In this paper, we proposed a scheme based on graphical password using QR Code which provides more security to the recent online system. It also contains a supportive sound signature. In this system, authentication is done using sequence of images in QR code form. Users select one click-point per image with the help of QR scanner or recognizer. The encoded phrase in a QR code emphasizes the minimum probability of attacking via shoulder surfing or other attacks.

Keywords: Graphical password, QR code, sound signature, image authentication, cued click point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
3116 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
3115 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer

Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal

Abstract:

Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).

Keywords: Biopolymer, lignin, industrial waste, mechanical resistances, self-compacting mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
3114 Reducing Variation of Dyeing Process in Textile Manufacturing Industry

Authors: M. Zeydan, G. Toğa

Abstract:

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3564
3113 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133
3112 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: Drive test, LTE, machine learning, uplink throughput prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
3111 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway.

The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
3110 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
3109 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7985
3108 The Use of FBC Ash for Preparation of Types of Hydraulic Binders Similar to Portland Cement

Authors: Karel Dvořák, Karel Kulísek, Radek Magrla

Abstract:

The reduction of greenhouse gases emissions is highly discussed ecological theme at present. In addition to power industry also main production sectors of binders, i.e. cement, air and hydraulic lime are very sensitive to these questions. One of the possibilities how CO2 emissions can be reduced directly at clinker burnout is represented by partial substitution of lime with a material containing limy ions at absence of carbonate group. Fluidised fly ash is one of such potential raw materials where CaO can be found free and also bound in anhydrite, CaSO4. At application of FBC (fluidized bed combustion) fly ash with approximate 20% CaO content and its dosing ratio to high percent lime 1:2, corresponding stechiometrically to the preparation of raw material powder, approximately 0,37 t CO2 per 1 ton of one-component cement would be released at clinker burnout compared to 0,46 t CO2 when orthodox raw materials are used. The reduction of CO2 emissions thus could reach even 20%.

Keywords: FBC ash, cement, hydraulic binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
3107 Parametric Analysis on Information Technology Adoption and Organizational Efficiency in Northern Nigeria

Authors: A. Y. Dutse, S. I. Ningi

Abstract:

The adoption and diffusion of Information Technology (IT) is one of the fastest growing trends in organizations operating within Nigeria’s economy. Public and private organizations make huge capital investments in an attempt acquire and adopt the state-of-the-art IT for improving operational efficiency. In this study the level of IT adoption is considered the primary driver of efficiency witnessed by organizations. The research gathered data on the intensity of IT usage, and resultant efficiency increase in the organizations’ operations. The data was analyzed using multiple regression analysis and reveals that high level of IT usage has enhance efficiency of private and public organizations in Northern part of Nigeria with organizations having strategic intent on IT adoption indicating higher efficiency gains.

Keywords: IT Adoption, Nigeria, Organizational efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
3106 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol

Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard

Abstract:

Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.

Keywords: Adaptation, exteroception, HRV, ICE, interoception, SSBN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
3105 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
3104 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
3103 Effect of Speed and Torque on Statistical Parameters in Tapered Bearing Fault Detection

Authors: Sylvester A. Aye, Philippus S. Heyns

Abstract:

The effect of the rotational speed and axial torque on the diagnostics of tapered rolling element bearing defects was investigated. The accelerometer was mounted on the bearing housing and connected to Sound and Vibration Analyzer (SVAN 958) and was used to measure the accelerations from the bearing housing. The data obtained from the bearing was processed to detect damage of the bearing using statistical tools and the results were subsequently analyzed to see if bearing damage had been captured. From this study it can be seen that damage is more evident when the bearing is loaded. Also, at the incipient stage of damage the crest factor and kurtosis values are high but as time progresses the crest factors and kurtosis values decrease whereas the peak and RMS values are low at the incipient stage but increase with damage.

Keywords: crest factor, damage detection, kurtosis, RMS, tapered roller bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
3102 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique

Authors: Shagufta Tabassum, V. P. Pawar

Abstract:

The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε) and relaxation time (τ).

Keywords: Excess parameters, relaxation time, static dielectric constant, time domain reflectometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
3101 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: A. Vilutis, V. Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: Friction, composite, carbide, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82
3100 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage

Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho

Abstract:

Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.

Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
3099 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
3098 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499