Search results for: multiple robots synchronization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1783

Search results for: multiple robots synchronization

1123 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals

Authors: Chen Sun, Nemai Chandra Karmakar

Abstract:

A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.

Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
1122 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1121 Secure Block-Based Video Authentication with Localization and Self-Recovery

Authors: Ammar M. Hassan, Ayoub Al-Hamadi, Yassin M. Y. Hasan, Mohamed A. A. Wahab, Bernd Michaelis

Abstract:

Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.

Keywords: Authentication, hash function, multiple descriptioncoding, public key encryption, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1120 Theoretical Analysis of Capacities in Dynamic Spatial Multiplexing MIMO Systems

Authors: Imen Sfaihi, Noureddine Hamdi

Abstract:

In this paper, we investigate the study of techniques for scheduling users for resource allocation in the case of multiple input and multiple output (MIMO) packet transmission systems. In these systems, transmit antennas are assigned to one user or dynamically to different users using spatial multiplexing. The allocation of all transmit antennas to one user cannot take full advantages of multi-user diversity. Therefore, we developed the case when resources are allocated dynamically. At each time slot users have to feed back their channel information on an uplink feedback channel. Channel information considered available in the schedulers is the zero forcing (ZF) post detection signal to interference plus noise ratio. Our analysis study concerns the round robin and the opportunistic schemes. In this paper, we present an overview and a complete capacity analysis of these schemes. The main results in our study are to give an analytical form of system capacity using the ZF receiver at the user terminal. Simulations have been carried out to validate all proposed analytical solutions and to compare the performance of these schemes.

Keywords: MIMO, scheduling, ZF receiver, spatial multiplexing, round robin scheduling, opportunistic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
1119 Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels

Authors: R. Vedhapriya Vadhana, Ruba Soundar, K. G. Jothi Shalini

Abstract:

We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.

Keywords: Beamforming, interference channels, MIMO-OFDM, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
1118 Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP)

Authors: C. Ardil

Abstract:

The Turkish Air Force needs to acquire a sixth- generation fighter aircraft in order to maintain its air superiority and dominance against its rivals under the risks posed by global geopolitical opportunities and threats. Accordingly, five evaluation criteria were determined to evaluate the sixth-generation fighter aircraft alternatives and to select the best one. Systematically, a new fuzzy preference optimization programming (POP) method is proposed to select the best sixth generation fighter aircraft in an uncertain environment. The POP technique considers both quantitative and qualitative evaluation criteria. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to a multiple criteria decision-making problem to evaluate and select sixth-generation fighter aircraft. The results of the fuzzy POP method are compared with the results of the fuzzy TOPSIS approach to validate it. According to the comparative analysis, fuzzy POP and fuzzy TOPSIS methods get the same results. This demonstrates the applicability of the fuzzy POP technique to address the sixth-generation fighter selection problem.

Keywords: Fighter aircraft selection, sixth-generation fighter aircraft, fuzzy decision process, multiple criteria decision making, preference optimization programming, POP, TOPSIS, Kizilelma, MIUS, fuzzy set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
1117 Minimization of Non-Productive Time during 2.5D Milling

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Keywords: Non-productive time, Airtime, 2.5 D milling, Laser cutting, Metaheuristic, Genetic Algorithm, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
1116 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1115 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1114 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh

Abstract:

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1113 Interference Management in Long Term Evolution-Advanced System

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

Keywords: LTE-Advanced, carrier aggregation, MIMO, capacity, peak data rate, spectral efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
1112 Tagged Grid Matching Based Object Detection in Wavelet Neural Network

Authors: R. Arulmurugan, P. Sengottuvelan

Abstract:

Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.

Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
1111 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: Global supply chains, quality, stochastic programming, supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1110 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
1109 Simple Agents Benefit Only from Simple Brains

Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde

Abstract:

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Keywords: Neural network, probabilistic control, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1108 M2LGP: Mining Multiple Level Gradual Patterns

Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala

Abstract:

Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.

Keywords: Gradual Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1107 Properties of Bacterial Nanocellulose for Scenic Arts

Authors: B. Suárez, G. Forman

Abstract:

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.

Keywords: Biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
1106 Evaluation of Attribute II Bt Sweet Corn Resistance and Reduced-Risk Insecticide Applications for Control of Corn Earworm

Authors: R. Weinzierl, R. Estes, N. Tinsley, M. Keshlaf

Abstract:

The corn earworm, Helicoverpa zea Boddie, is a serious pest of corn. Larval feeding in ear tips destroys kernels and allows growth of fungi and production of mycotoxins. Infested sweet corn is not marketable. Development of improved transgenic hybrids expressing insecticidal toxins from Bacillus thuringiensis (Bt) may limit or prevent crop losses. The effectiveness of Attribute® II Bt resistance and applications of Voliam Xpress insecticide were evaluated for effectiveness in controlling corn earworm in plots near Urbana, IL, USA, in 2013. Where no insecticides were applied, ear infestations and kernel damage in Attribute® II ‘Protector’ plots were consistently lower (near zero) than in plots of the non-Bt isoline ‘Garrison.’ Multiple applications of Voliam Xpress significantly reduced the number of corn earworm larvae and kernel damage in the Garrison plots, but infestations and damage in these plots were greater than in Protectorplots that did not receive insecticide applications. Our results indicate that Attribute® II Bt resistance is more effective than multiple applications of an insecticide for preventing losses caused by corn earworm in sweet corn.

Keywords: Bacillus thuringiensis, Helicoverpa zea, insect pest management, transgenic sweet corn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1105 Representing Shared Join Points with State Charts: A High Level Design Approach

Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad

Abstract:

Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.

Keywords: Aspect Oriented Software Development, Shared Join Points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1104 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
1103 Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy

Authors: Edikan E. Akpanibah, Okwigbedi Oghen’Oro

Abstract:

In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.

Keywords: DC pension fund, Hamilton-Jacobi-Bellman, optimal investment strategies, power transformation method, stochastic, voluntary contribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
1102 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Yu Shi, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: Laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277
1101 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: Autonomic, self-adaption, self-healing, self-optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
1100 Design and Synthesis of Two Tunable Bandpass Filters Based On Varactors and Defected Ground Structure

Authors: M. Boulakroune, M. Challal, H. Louazene, S. Fentiz

Abstract:

This paper presents two types of microstrip bandpass filter (BPF) at microwave frequencies. The first one is a tunable BPF using planar patch resonators based on a varactor diode. The filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactor diodes are connected. Indeed, this filter is initially centered at 2.4 GHz; the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The second structure is a BPF for ultra-wideband (UWB) applications based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.

Keywords: Defected ground structure, varactor diode, microstrip bandpass filter, multiple-mode resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
1099 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: UFMC, IDMA, 5G, subband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
1098 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
1097 View-Point Insensitive Human Pose Recognition using Neural Network

Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung

Abstract:

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Keywords: Computer vision, neural network, pose recognition, view-point insensitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
1096 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
1095 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs

Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang

Abstract:

Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.

Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1094 Investigating Solar Cycles and Media Sentiment Through Advanced NLP Techniques

Authors: Aghamusa Azizov

Abstract:

This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.

Keywords: Solar Activity Correlation, Media Sentiment Analysis, Natural Language Processing, NLP, Historical Event Patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69