Search results for: Customer friendly washing machine
1325 Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control
Authors: K. K. Starkov, A. Y. Pogromsky, I. J. B. F. Adan, J. E. Rooda
Abstract:
In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.
Keywords: Flexible manufacturing systems, tracking systems, discrete time systems, production control, boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151324 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181323 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451322 Investigating the Determinants of Purchase Intention in C2C E-Commerce
Authors: Kee-Young Kwahk, Xi Ge, Jun-Hyung Park
Abstract:
This study aims to examine the determinants of purchase intention in C2C e-commerce. Specifically the role of instant messaging in the C2C e-commerce contextis investigated. In addition to instant messaging, we brought in two antecedents of purchase intention - trust and customer satisfaction - to establish a theoretical research model. Structural equation modeling using LISREL was used to analyze the data.We discussed the research findings and suggested some implications for researchers and practitioners.Keywords: E-commerce, Online marketing, C2C, Purchase Intention
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31961321 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23961320 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company
Authors: Dmitry K. Shaytan, Georgy D. Laptev
Abstract:
In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.
Keywords: Concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18521319 Phase Transformation Temperatures for Shape Memory Alloy Wire
Authors: Tan Wee Choon, Abdul Saad Salleh, Saifulnizan Jamian, Mohd. Imran Ghazali
Abstract:
Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the Universal Testing Machine has been conducted to determine the phase transformation temperatures. The Flexinol wire was applied with force and maintained throughout the experiment and at the same time it was heated up slowly until a temperature of approximately 1000C with direct current. The direct current was then slowly decreased to cool down the temperature of the Flexinol wire. All the phase transformation temperatures for Flexinol wire were obtained. The austenite start at 52.540C and austenite finish at 60.900C, while martensite start at 44.780C and martensite finish at 32.840C.Keywords: Phase transformation temperature, Robotic, Shapememory alloy, Universal Testing Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39311318 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.
Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6701317 Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.)
Authors: T. Basitah
Abstract:
This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples.Keywords: Natural dye, Freeze-drying, Garcinia mangostana Linn, Mordanting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43931316 The Influence of Travel Experience within Perceived Public Transport Quality
Authors: Armando Cartenì, Ilaria Henke
Abstract:
The perceived public transport quality is an important driver that influences both customer satisfaction and mobility choices. The competition among transport operators needs to improve the quality of the services and identify which attributes are perceived as relevant by passengers. Among the “traditional” public transport quality attributes there are, for example: travel and waiting time, regularity of the services, and ticket price. By contrast, there are some “non-conventional” attributes that could significantly influence customer satisfaction jointly with the “traditional” ones. Among these, the beauty/aesthetics of the transport terminals (e.g. rail station and bus terminal) is probably one of the most impacting on user perception. Starting from these considerations, the point stressed in this paper was if (and how munch) the travel experience of the overall travel (e.g. how long is the travel, how many transport modes must be used) influences the perception of the public transport quality. The aim of this paper was to investigate the weight of the terminal quality (e.g. aesthetic, comfort and service offered) within the overall travel experience. The case study was the extra-urban Italian bus network. The passengers of the major Italian terminal bus were interviewed and the analysis of the results shows that about the 75% of the travelers, are available to pay up to 30% more for the ticket price for having a high quality terminal. A travel experience effect was observed: the average perceived transport quality varies with the characteristic of the overall trip. The passengers that have a “long trip” (travel time greater than 2 hours) perceived as “low” the overall quality of the trip even if they pass through a high quality terminal. The opposite occurs for the “short trip” passengers. This means that if a traveler passes through a high quality station, the overall perception of that terminal could be significantly reduced if he is tired from a long trip. This result is important and if confirmed through other case studies, will allow to conclude that the “travel experience impact" must be considered as an explicit design variable for public transport services and planning.Keywords: Transportation planning, sustainable mobility, decision support system, discrete choice model, design problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11781315 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys
Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge
Abstract:
In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.
Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19291314 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns
Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad
Abstract:
Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.
Keywords: Reusable surgical gown, laundry, sterilization, wet bacterial penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491313 Performance Analysis of List Scheduling in Heterogeneous Computing Systems
Authors: Keqin Li
Abstract:
Given a parallel program to be executed on a heterogeneous computing system, the overall execution time of the program is determined by a schedule. In this paper, we analyze the worst-case performance of the list scheduling algorithm for scheduling tasks of a parallel program in a mixed-machine heterogeneous computing system such that the total execution time of the program is minimized. We prove tight lower and upper bounds for the worst-case performance ratio of the list scheduling algorithm. We also examine the average-case performance of the list scheduling algorithm. Our experimental data reveal that the average-case performance of the list scheduling algorithm is much better than the worst-case performance and is very close to optimal, except for large systems with large heterogeneity. Thus, the list scheduling algorithm is very useful in real applications.Keywords: Average-case performance, list scheduling algorithm, mixed-machine heterogeneous computing system, worst-case performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13481312 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17151311 Machine Learning Methods for Flood Hazard Mapping
Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto
Abstract:
This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.
Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7231310 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.
Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38471309 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431308 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset
Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo
Abstract:
Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.
Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21211307 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods
Authors: Adel Aloraini
Abstract:
Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.
Keywords: Causal interactions , banks, feature selection, regularizere,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461306 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.
Keywords: Defective autoparts products, Bayesian framework, Generalized linear mixed model (GLMM), Risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091305 Customer Value Creation by CRM System in Electronic Device Companies
Authors: Hideki.Kobayashi, Hiroshi.Osada
Abstract:
The service industry accounts for about 70% of GDP of Japan, and the importance of the service innovation is pointed out. The importance of the system use and the support service increases in the information system that is one of the service industries. However, because the system is not used enough, the purpose for which it was originally intended cannot often be achieved in the CRM system. To promote the use of the system, the effective service method is needed. It is thought that the service model's making and the clarification of the success factors are necessary to improve the operation service of the CRM system. In this research the model of the operation service in the CRM system is made.Keywords: Information system, Operation service, Serviceinnovation, Solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161304 Human Action Recognition Based on Ridgelet Transform and SVM
Authors: A. Ouanane, A. Serir
Abstract:
In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environmentKeywords: Human action, Ridgelet Transform, PCA, K-means, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681303 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups
Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran
Abstract:
We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681302 Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
Authors: Orestis Κ. Efthymiou, Stavros T. Ponis
Abstract:
In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.Keywords: Industry 4.0, internet of things, manufacturing systems, material handling, logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551301 Youth Friendly Health Services for Rural Thai Teenagers
Authors: C. Sridawruang
Abstract:
Young people today has sexual activities differing from those of earlier generations, in that teenagers are likely to have multiple partners, and are frequently in short-term relationships or with partners that are not well known to them. The proportion of teenage mothers in Thailand has increased. Young people were not specifically addressed during the overall very successful HIV-prevention campaigns. Because of this missed opportunity, they are still unaware of the risk of unsafe sexual behavior. Aims: To describe the reproductive health care services in perspectives of rural Thai teenagers Methods: This survey was one part of a mixed method approach taken using survey and focus groups with 439 teenagers aged 12-18 years in 5 villages, Udon Thani, Thailand. The standard questionnaire survey had been used for collecting data. The numeric data was checked and analyzed by using descriptive statistics. Results: Most teenager respondents stated that they do not know where sexual reproductive health services provided for them. Most teenagers felt difficult to access and talk with health staff about sexual related issues. They stated that discussing, or consulting with health providers might not be safe. Teenagers might lose opportunities to access and get advice from health care services. The mean knowledge score of contraception and condom reproductive was 6.34 from a total score 11. Most teenagers especially girls expressed a need for counseling services and reported a need for telephone services. Conclusions: The need of appropriate information focusing on sexual relationships and contraception should be designed to help young people make wise decisions and there should be set health care services for Thai teenagers to make sure that teenagers could access easily. Health care providers need to be trained to improve their knowledge, attitudes and skills in reproductive health care practices for Thai teenagers.
Keywords: Youth friendly health services, rural, Thai, teenagers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13011300 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24831299 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841298 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations
Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal
Abstract:
Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them.
Keywords: Process map, drilling loss matrix, availability, utilization, productivity, percussion rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10881297 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain
Abstract:
Climate change and environmental pressures are major international issues nowadays. It is time when governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies. This is the prime time to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to its engineering, financial, environmental and ecological benefits. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate. Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3889 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.
Keywords: Waste glass, recycling, environmentally friendly, glass aggregate, strength development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79231296 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application
Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman
Abstract:
Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.
Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4774