Search results for: Biogeography based optimization method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16771

Search results for: Biogeography based optimization method

16111 Properties of Composite Nanofiber Produced by Single and Coaxial Nozzle Method used for Electrospinning Technique

Authors: Onur Ayaz, Nuray Ucar, Elif Bahar, Oguzhan Ucar, Mustafa Oksuz, Aysen Onen, Mehmet Ucar, Ezgi İşmar, Ali Demir

Abstract:

In this study, single nozzle method used for electrospinning technique which composite polymer solution with cellulose nanowiskers (CNW) was treated by ultrasonic sonificator have been compared with coaxial (double) nozzle method, in terms of mechanical, thermal and morphological properties of composite nanofiber. The effect of water content in composite polymer solution on properties of nanofiber has also been examined. It has been seen that single nozzle method which polymer solution does not contain water has better results than that of coaxial method, in terms of mechanical, thermal and morphological properties of nanofiber. However, it is necessary to make an optimization study on setting condition of ultrasonic treatment to get better dispersion of CNW in composite nanofiber and to get better mechanical and thermal properties

Keywords: cellulose nanowhiskers, coaxial nozzle, composite nanofiber, electrospinning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
16110 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 275
16109 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach

Authors: Helen L. Hein, Joachim Schwarte

Abstract:

As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.

Keywords: Aerogel-based, insulating material, early develop¬ment phase, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
16108 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
16107 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem

Authors: Ahmad Rabanimotlagh

Abstract:

In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.

Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
16106 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem

Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek

Abstract:

Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.

Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
16105 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

Authors: Jain-Shing Liu

Abstract:

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
16104 A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

Authors: Hanny H. Tumbelaka, Masafumi Miyatake

Abstract:

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.

Keywords: Active Power Filter, MPPT, PV Energy Conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
16103 Using Data Mining for Learning and Clustering FCM

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian

Abstract:

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.

Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
16102 Iris Localization using Circle and Fuzzy Circle Detection Method

Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi

Abstract:

Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.

Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
16101 Numerical Optimization within Vector of Parameters Estimation in Volatility Models

Authors: J. Arneric, A. Rozga

Abstract:

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).

Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656
16100 Implementing ALD in Product Development: The Effect of Geometrical Dimensions on Tubular Member Deformation

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Tadayuki Kyoutani, Dai-Heng Chen, Ken Kaminishi

Abstract:

The product development process has undergone many changes concomitant with world progress in order to produce products that meet customer needs quickly and inexpensively. Analysis-Led Design (ALD) is one of the latest methods in the product development process. It focuses more on up-front engineering, a product quality optimization process that starts early in the conceptual design stage. Product development and manufacturing through ALD utilizes digital tools extensively for design, analysis and product optimization. This study uses computer-aided design (CAD) and finite element method (FEM) simulation to examine the modes of deformation of tubular members under axial loading. A multiple-combination impact absorption tubular member, referred to as a compress–expand member, is proposed as a substitute for the conventional thin-walled cylindrical tube to be used as a vehicle’s crash box. The study of deformation modes is crucial for evaluating the geometrical dimension limits by which a member can absorb energy efficiently.

Keywords: Analysis-led design, axial collapse, tubular member, finite element method, thin-walled cylindrical tube, compress-expand member, deformation modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
16099 Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

Authors: Waraporn Apiwatanapiwat, Pilanee Vaithanomsat, Phanu Somkliang, Taweesiri Malapant

Abstract:

This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reaction was controlled at temperature 50 °C in water bath for 45 minutes. After that, the supernatant (protein hydrolysate) was separated using centrifuge at 8000g for 30 minutes. The maximum yield of resulting protein hydrolysate was 73.27 % with 7.34% moisture, 71.69% total protein, 7.12% lipid, 2.49% ash. The product was also capable of well dissolving in water.

Keywords: Production, protein hydrolysate, Jatropha curcas cake, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
16098 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: Assembly scheduling, large-scale products, make-to-order, rescheduling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
16097 Improvement of MLLR Speaker Adaptation Using a Novel Method

Authors: Ing-Jr Ding

Abstract:

This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.

Keywords: hidden Markov model, maximum likelihood linearregression, speech recognition, speaker adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
16096 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems

Authors: I. A. Farhat

Abstract:

The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.

Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
16095 High Level Characterization and Optimization of Switched-Current Sigma-Delta Modulators with VHDL-AMS

Authors: A. Fakhfakh, N. Ksentini, M. Loulou, N. Masmoudi, J. J. Charlot

Abstract:

Today, design requirements are extending more and more from electronic (analogue and digital) to multidiscipline design. These current needs imply implementation of methodologies to make the CAD product reliable in order to improve time to market, study costs, reusability and reliability of the design process. This paper proposes a high level design approach applied for the characterization and the optimization of Switched-Current Sigma- Delta Modulators. It uses the new hardware description language VHDL-AMS to help the designers to optimize the characteristics of the modulator at a high level with a considerably reduced CPU time before passing to a transistor level characterization.

Keywords: high level design, optimization, switched-Current Sigma-Delta Modulators, VHDL-AMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
16094 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods

Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen

Abstract:

Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.

Keywords: Accommodation establishments, human resource management, MOORA, multi criteria decision making, SWARA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
16093 HSV Image Watermarking Scheme Based on Visual Cryptography

Authors: Rawan I. Zaghloul, Enas F. Al-Rawashdeh

Abstract:

In this paper a simple watermarking method for color images is proposed. The proposed method is based on watermark embedding for the histograms of the HSV planes using visual cryptography watermarking. The method has been proved to be robust for various image processing operations such as filtering, compression, additive noise, and various geometrical attacks such as rotation, scaling, cropping, flipping, and shearing.

Keywords: Histogram, HSV image, Visual Cryptography, Watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
16092 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: Cannibalization, machine learning, online marketplace, revenue optimization, yield optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
16091 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion post-combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
16090 The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process

Authors: Yang Laixia, Deng Jun, Li Dichen, Bai Yang

Abstract:

The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.

Keywords: Analytic Hierarchy Process, Multi-objective optimization, Orthogonal test, Selective Laser Sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
16089 Optimal Peer-to-Peer On-Orbit Refueling Mission Planning with Complex Constraints

Authors: Jing Yu, Hongyang Liu, Dong Hao

Abstract:

On-Orbit Refueling is of great significance in extending space crafts' lifetime. The problem of minimum-fuel, time-fixed, Peer-to-Peer On-Orbit Refueling mission planning is addressed here with the particular aim of assigning fuel-insufficient satellites to the fuel-sufficient satellites and optimizing each rendezvous trajectory. Constraints including perturbation, communication link, sun illumination, hold points for different rendezvous phases, and sensor switching are considered. A planning model has established as well as a two-level solution method. The upper level deals with target assignment based on fuel equilibrium criterion, while the lower level solves constrained trajectory optimization using special maneuver strategies. Simulations show that the developed method could effectively resolve the Peer-to-Peer On-Orbit Refueling mission planning problem and deal with complex constraints.

Keywords: Mission planning, orbital rendezvous, on-orbit refueling, space mission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
16088 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
16087 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
16086 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms

Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi

Abstract:

In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.

Keywords: Time history analysis, wavelet transform, optimization, earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
16085 Application of Particle Swarm Optimization for Economic Load Dispatch and Loss Reduction

Authors: N. Phanthuna, J. Jaturacherdchaiskul, S. Lerdvanittip, S. Auchariyamet

Abstract:

This paper proposes a particle swarm optimization (PSO) technique to solve the economic load dispatch (ELD) problems. For the ELD problem in this work, the objective function is to minimize the total fuel cost of all generator units for a given daily load pattern while the main constraints are power balance and generation output of each units. Case study in the test system of 40-generation units with 6 load patterns is presented to demonstrate the performance of PSO in solving the ELD problem. It can be seen that the optimal solution given by PSO provides the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction.

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Loss Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
16084 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique

Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate

Abstract:

New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.

Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
16083 Multi-Case Multi-Objective Simulated Annealing (MC-MOSA): New Approach to Adapt Simulated Annealing to Multi-objective Optimization

Authors: Abdelfatteh Haidine, Ralf Lehnert

Abstract:

In this paper a new approach is proposed for the adaptation of the simulated annealing search in the field of the Multi-Objective Optimization (MOO). This new approach is called Multi-Case Multi-Objective Simulated Annealing (MC-MOSA). It uses some basics of a well-known recent Multi-Objective Simulated Annealing proposed by Ulungu et al., which is referred in the literature as U-MOSA. However, some drawbacks of this algorithm have been found, and are substituted by other ones, especially in the acceptance decision criterion. The MC-MOSA has shown better performance than the U-MOSA in the numerical experiments. This performance is further improved by some other subvariants of the MC-MOSA, such as Fast-annealing MC-MOSA, Re-annealing MCMOSA and the Two-Stage annealing MC-MOSA.

Keywords: Simulated annealing, multi-objective optimization, acceptance decision criteria, re-annealing, two-stage annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
16082 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seok Goo Lee, Sung Ho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, Caron Dioxide, Carbon Capture and Storage, Simulation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690