Search results for: Automatic Reasoning Techniques.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3170

Search results for: Automatic Reasoning Techniques.

2510 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2509 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: Resistivity, inversion, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6073
2508 Design of Domain-Specific Software Systems with Parametric Code Templates

Authors: Kostyantyn Yermashov, Karsten Wolke, Karl Hayo Siemsen

Abstract:

Domain-specific languages describe specific solutions to problems in the application domain. Traditionally they form a solution composing black-box abstractions together. This, usually, involves non-deep transformations over the target model. In this paper we argue that it is potentially powerful to operate with grey-box abstractions to build a domain-specific software system. We present parametric code templates as grey-box abstractions and conceptual tools to encapsulate and manipulate these templates. Manipulations introduce template-s merging routines and can be defined in a generic way. This involves reasoning mechanisms at the code templates level. We introduce the concept of Neurath Modelling Language (NML) that operates with parametric code templates and specifies a visualisation mapping mechanism for target models. Finally we provide an example of calculating a domain-specific software system with predefined NML elements.

Keywords: software design, code templates, domain-specific languages, modelling languages, generic tools

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2507 Stereotype Student Model for an Adaptive e-Learning System

Authors: Ani Grubišić, Slavomir Stankov, Branko Žitko

Abstract:

This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.

Keywords: Adaptive e-learning systems, adaptive courseware, stereotypes, Bloom's knowledge taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
2506 The Usefulness of Logical Structure in Flexible Document Categorization

Authors: Jebari Chaker, Ounalli Habib

Abstract:

This paper presents a new approach for automatic document categorization. Exploiting the logical structure of the document, our approach assigns a HTML document to one or more categories (thesis, paper, call for papers, email, ...). Using a set of training documents, our approach generates a set of rules used to categorize new documents. The approach flexibility is carried out with rule weight association representing your importance in the discrimination between possible categories. This weight is dynamically modified at each new document categorization. The experimentation of the proposed approach provides satisfactory results.

Keywords: categorization rule, document categorization, flexible categorization, logical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
2505 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System

Authors: Vinay Kumar Pilania, Debashish Chakravarty

Abstract:

The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.

Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2504 Supplier Sift – A Strategic Need of Modern Entrepreneurship

Authors: Rizwan Moeen, Riaz Ahmad, Tanweer Ul Islam, Shahid Ikramullah, Muhammad Umer

Abstract:

Supplier appraisal fosters energy in Supply Chain Management and helps in best optimization of viable business partners for a company. Many Decision Making techniques have already been proposed by researchers for supplier-s appraisal. However, Analytic Hierarchy Process (AHP) is assumed to be the most structured technique to attain near-best solution of the problem. This paper focuses at implementation of AHP in the procurement processes. It also suggests that on what factors a Public Sector Enterprises must focus while dealing with their suppliers and what should the suppliers do to synchronize their activities with the strategic objectives of Organization. It also highlights the weak areas in supplier appraisal process with a view to suggest viable recommendations.

Keywords: AHP, MCDM techniques, Supply Chain Management (SCM), Supplier appraisal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
2503 A Robust Implementation of a Building Resources Access Rights Management System

Authors: E. Neagoe, V. Balanica

Abstract:

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

Keywords: Access authorization, smart building controller, software security, access rights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2502 Design and Control Strategy of Diffused Air Aeration System

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).

Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515
2501 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers

Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova

Abstract:

Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.

Keywords: Drama education, preschool education, preschool teacher, research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
2500 Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems

Authors: Z. Pavlík, M. Čáchová, E. Vejmelková, T. Korecký, J. Fořt, M. Pavlíková, R. Černý

Abstract:

The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds. 

Keywords: Waste ceramic powder, lime-pozzolan plasters, effective thermal conductivity, homogenization techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2499 A Bayesian Network Reliability Modeling for FlexRay Systems

Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu

Abstract:

The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.

Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
2498 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
2497 A Contribution to 3D Modeling of Manufacturing Tolerance Optimization

Authors: F. Sebaa, A. Cheikh, M. Rahou

Abstract:

The study of the generated defects on manufactured parts shows the difficulty to maintain parts in their positions during the machining process and to estimate them during the pre-process plan. This work presents a contribution to the development of 3D models for the optimization of the manufacturing tolerances. An experimental study allows the measurement of the defects of part positioning for the determination of ε and the choice of an optimal setup of the part. An approach of 3D tolerance based on the small displacements method permits the determination of the manufacturing errors upstream. A developed tool, allows an automatic generation of the tolerance intervals along the three axes.

Keywords: Manufacturing tolerances, 3D modeling, optimization, errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
2496 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: Distillation curve, petroleum distillation, simulation, true boiling point curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2495 Mapping Knowledge Model Onto Java Codes

Authors: B.A.Gobin, R.K.Subramanian

Abstract:

This paper gives an overview of the mapping mechanism of SEAM-a methodology for the automatic generation of knowledge models and its mapping onto Java codes. It discusses the rules that will be used to map the different components in the knowledge model automatically onto Java classes, properties and methods. The aim of developing this mechanism is to help in the creation of a prototype which will be used to validate the knowledge model which has been generated automatically. It will also help to link the modeling phase with the implementation phase as existing knowledge engineering methodologies do not provide for proper guidelines for the transition from the knowledge modeling phase to development phase. This will decrease the development overheads associated to the development of Knowledge Based Systems.

Keywords: KBS, OWL, ontology, knowledge models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
2494 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility

Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young

Abstract:

The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.

Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
2493 Feature-Driven Classification of Musical Styles

Authors: A. Buzzanca, G. Castellano, A.M. Fanelli

Abstract:

In this paper we address the problem of musical style classification, which has a number of applications like indexing in musical databases or automatic composition systems. Starting from MIDI files of real-world improvisations, we extract the melody track and cut it into overlapping segments of equal length. From these fragments, some numerical features are extracted as descriptors of style samples. We show that a standard Bayesian classifier can be conveniently employed to build an effective musical style classifier, once this set of features has been extracted from musical data. Preliminary experimental results show the effectiveness of the developed classifier that represents the first component of a musical audio retrieval system

Keywords: Musical style, Bayesian classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
2492 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
2491 Software Maintenance Severity Prediction for Object Oriented Systems

Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

Keywords: Neural Network, Software faults, Software Metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2490 Investigating the Effectiveness of Iranian Architecture on Sustainable Space Creation

Authors: Mansour Nikpour, Mohsen Ghasemi, Elahe Mosavi, Mohd Zin Kandar

Abstract:

lack of convenience condition is one of the problems in open spaces in hot and dry regions. Nowadays parks and green landscapes was designed and constructed without any attention to convenience condition. If this process continues, Citizens will encounter with some problems. Harsh climatic condition decreases the efficiency of people-s activities. However there is hard environment condition in hot and dry regions, Convenience condition has been provided in Iranian traditional architecture by using techniques and methods. In this research at the first step characteristics of Iranian garden that can effect on creating sustainable spaces were investigated through observation method. Pleasure space in cities will be created with using these methods and techniques in future cities. Furthermore the comparison between Iranian garden and landscape in today-s cities demonstrate the effectiveness of Iranian garden characteristics on sustainable spaces. Iranian architects used simple and available methods for creating open architectural spaces. In addition desirable conditions were provided with taking in to account both physically and spiritually. Parks and landscapes in future cities can be designed and constructed with respect to architectural techniques that used in Iranian gardens in hot and arid regions.

Keywords: Iranian garden, convenience condition, landscape, sustainable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2489 Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters

Authors: Kaumil B. Shah, Hina Chandwani

Abstract:

The modular multilevel converter (MMC) is one of the advanced topologies for medium and high-voltage applications. In high-power, high-voltage MMC, a large number of switching power devices are required. These switching power devices (IGBT) considerable switching losses. This paper analyzes the performance of different discontinuous pulse width modulation (DPWM) techniques and compares the results against a conventional carrier based pulse width modulation method, in order to reduce the switching losses of an MMC. The DPWM reference wave can be generated by adding the zero-sequence component to the original (sine) reference modulation signal. The result of the addition gives the reference signal of DPWM techniques. To minimize the switching losses of the MMC, the clamping period is controlled according to the absolute value of the output load current. No switching is generated in the clamping period so overall switching of the power device is reduced. The simulation result of the different DPWM techniques is compared with conventional carrier-based pulse-width modulation technique.

Keywords: Modular multilevel converter, discontinuous pulse width modulation, switching losses, zero-sequence voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
2488 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast

Abstract:

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Keywords: Computer architecture, parallel computing, NOC, routing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
2487 Automatic Intelligent Analysis of Malware Behaviour

Authors: H. Dornhackl, K. Kadletz, R. Luh, P. Tavolato

Abstract:

In this paper, we describe the use of formal methods to model malware behaviour. The modelling of harmful behaviour rests upon syntactic structures that represent malicious procedures inside malware. The malicious activities are modelled by a formal grammar, where API calls’ components are the terminals and the set of API calls used in combination to achieve a goal are designated non-terminals. The combination of different non-terminals in various ways and tiers make up the attack vectors that are used by harmful software. Based on these syntactic structures a parser can be generated which takes execution traces as input for pattern recognition.

Keywords: Malware behaviour, modelling, parsing, search, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2486 Modeling of the Process Parameters using Soft Computing Techniques

Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić

Abstract:

The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.

Keywords: fuzzy logic, manufacturing, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
2485 Biometric Methods and Implementation of Algorithms

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Shailendra Singh

Abstract:

Biometric measures of one kind or another have been used to identify people since ancient times, with handwritten signatures, facial features, and fingerprints being the traditional methods. Of late, Systems have been built that automate the task of recognition, using these methods and newer ones, such as hand geometry, voiceprints and iris patterns. These systems have different strengths and weaknesses. This work is a two-section composition. In the starting section, we present an analytical and comparative study of common biometric techniques. The performance of each of them has been viewed and then tabularized as a result. The latter section involves the actual implementation of the techniques under consideration that has been done using a state of the art tool called, MATLAB. This tool aids to effectively portray the corresponding results and effects.

Keywords: Matlab, Recognition, Facial Vectors, Functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3192
2484 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets

Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi

Abstract:

In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.

Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2483 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
2482 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
2481 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200