Search results for: Vehicular Named Data Networking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7784

Search results for: Vehicular Named Data Networking

1184 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
1183 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25
1182 Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding

Authors: Behnaz Shahrokh, Garnik N. Sargsyan, Arkadi B. Harutyunyan

Abstract:

Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when taking into account the hydrogen bond formation between a hydrogen atom of alkyl residue and the extreme atom of carbon of the vinyl group. The dissociation of TS up to the products is studied by energy minimization procedure using the mathematical program Gaussian. The obtained calculation data for VEE testify that the decomposition of this ether may be conditioned by hydrogen bond formation for two possible versions: when α- or β- hydrogen atoms of the ethyl group are bound to carbon atom of the vinyl group. Applying the same calculation methods to other ethers (VPE and VBE) it is shown that only in the case of hydrogen bonding between α-hydrogen atom of the alkyl residue and the extreme atom of carbon of the vinyl group (αH---C) results in decay of theses ethers.

Keywords: Gaussian, MM2, ethers, TS, decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
1181 Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer

Authors: Si-Hwan Kim, Gum-Sung Ryu, Kyung-Taek Koh, Jang-Hwa Lee

Abstract:

Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.

Keywords: Bottom Ash, Geopolymer mortar, Flowability, Strength Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
1180 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Authors: Lara F. Horani, Shurong Tong

Abstract:

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.

Keywords: Analytic hierarchy process, green product, customer requirements for green design, importance weights for the customer requirements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
1179 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration

Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad

Abstract:

A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.

Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
1178 The Impact of Information and Communication Technology on Bilateral Trade in Goods

Authors: Christina Tay

Abstract:

This paper investigates the impact of Information and Communication Technology (ICT) on bilateral trade in goods. Empirical analysis is performed on the United States and 34 partnering countries from 2000 to 2013. Our econometric model fits the data well, explaining 52% of the variation in trade flows for goods trade, 53.2% of the variation in trade flows for goods export and 48% of the variation in trade flows for goods import. For every 10% increase in fixed broadband Internet subscribers per 100 people increases, goods trade by 7.9% and for every 5% increase in fixed broadband Internet subscribers per 100 people, goods export increases by 11%. For every 1% increase in fixed telephone line penetration per 100 people, goods trade increases by 26.3%, goods export increases by 24.4% and goods import increases by 24.8%. For every 1% increase in mobile-cellular telephone subscriptions, goods trade decreases by 29.6% and goods export decreases by 27.1%, whilst for every 0.01% increase in mobile-cellular telephone subscriptions, goods import decreases by 34.3%. For every 1% increase in the percentage of population who used the Internet from any location in the last 12 months Internet, goods trade increases by 32.5%, goods export increases by 38.9%, goods import increases by 33%. All our trade determinants as well as our ICT variables have significances on goods exports for the US. We can also draw from our study that the US relies more rather heavily on ICT for its goods export compared to goods import.

Keywords: Bilateral trade, goods trade, information and communication technologies, Internet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
1177 Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: Dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up scaling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1176 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: Computer vision, rice kernel, husking, breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1175 View-Point Insensitive Human Pose Recognition using Neural Network

Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung

Abstract:

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Keywords: Computer vision, neural network, pose recognition, view-point insensitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
1174 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
1173 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: Microwave filter, scattering parameter (s-parameter), coupling matrix, intelligent tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
1172 Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

Authors: Marco Raciti Castelli, Ernesto Benini

Abstract:

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Keywords: Wind turbine, NACA 0021, DU 06-W-200.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824
1171 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
1170 Perceptions of Educators on the Learners’ Youngest Age for the Introduction of ICTs in Schools: A Personality Theory Approach

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

Age ratings are very helpful in providing parents with relevant information for the purchase and use of digital technologies by the children; this is why the non-definition of age ratings for the use of ICTs by children in schools is a major concern; and this problem serves as a motivation for this study whose aim is to examine the factors affecting the perceptions of educators on the learners’ youngest age for the introduction of ICTs in schools. This aim is achieved through two types of research objectives: the identification and design of theories and models on age ratings, and the empirical testing of such theories and models in a survey of educators from the Camperdown district of the South African KwaZulu-Natal province. A questionnaire is used for the collection of the data of this survey whose validity and reliability is checked in SPSS prior to its descriptive and correlative quantitative analysis. The main hypothesis supporting this research is the association between the demographics of educators, their personality, and their perceptions on the learners’ youngest age for the introduction of ICTs in schools; as claimed by existing research; except that the present study looks at personality from three dimensions: self-actualized personalities, fully functioning personalities, and healthy personalities. This hypothesis was fully confirmed by the empirical study conducted by this research except for the demographic factor where only the educators’ grade or class was found to be associated with the personality of educators.

Keywords: Age ratings, Educators, E-learning, Personality Theories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1169 Study on the Effect of Road Infrastructure, Socio-Economic and Demographic Features on Road Crashes in Bangladesh

Authors: Shakil M. Rifaat, Md. H. Rahman, Mohammed, Mosabbir Pasha

Abstract:

Road crashes not only claim lives and inflict injuries but also create economic burden to the society due to loss of productivity. The problem of deaths and injuries as a result of road traffic crashes is now acknowledged to be a global phenomenon with authorities in virtually all countries of the world concerned about the growth in the number of people killed and seriously injured on their roads. However, the road crash scenario of a developing country like Bangladesh is much worse comparing with this of developed countries. For developing proper countermeasures it is necessary to identify the factors affecting crash occurrences. The objectives of the study is to examine the effect of district wise road infrastructure, socioeconomic and demographic features on crash occurrence .The unit of analysis will be taken as individual district which has not been explored much in the past. Reported crash data obtained from Bangladesh Road Transport Authority (BRTA) from the year 2004 to 2010 are utilized to develop negative binomial model. The model result will reveal the effect of road length (both paved and unpaved), road infrastructure and several socio economic characteristics on district level crash frequency in Bangladesh.

Keywords: Demographic, Negative Binomial Model, Road Infrastructure, Socio-economic, Traffic Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
1168 In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa

Authors: Marek Halenár, Eva Tvrdá, Tomáš Slanina, Ľubomír Ondruška, Eduard Kolesár, Peter Massányi, Adriana Kolesárová

Abstract:

The present in vitro study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the in vitro incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P<0.05 with respect to 0.5 mg/mL and 1 mg/mL AMG; Time 5 h) and mitochondrial activity (P< 0.05 in case of 0.5 mg/mL AMG; P< 0.01 in case of 1 mg/mL AMG; P < 0.001 with respect to 2.5 mg/mL and 5 mg/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity.

Keywords: Amygdalin, CASA, mitochondrial activity, motility, rabbits, spermatozoa, viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
1167 Intensifier as Changed from the Impolite Word in Thai

Authors: Methawee Yuttapongtada

Abstract:

Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.

Keywords: Impolite word, intensifier, Thai, semantic change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1166 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1165 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
1164 Assessing Innovation Activity in Mexico and South Korea: An Econometric Approach

Authors: Mario Gómez, Won Ho Kim, Ángel Licona, José Carlos Rodríguez

Abstract:

This article analyzes innovation activity in Mexico and South Korea. It develops an econometric model to test for structural breaks in the number of patent applications filed by residents and nonresidents in these countries during the period of 1965 to 2012. These changes may suggest that firms’ innovative capabilities have changed because of implementing different science, technology and innovation (STI) policies in Mexico and South Korea. Two important features characterize this research from others already developed by these authors. First, the theoretical research framework in this research is the debate between the assimilation view of growth and the accumulation view of growth. This characteristic suggests that trade liberalization should be accompanied by an adequate STI policy to boost competitiveness among indigenous firms. Second, the analysis in this research stresses the importance of key actors (e.g. governments) to successfully develop innovation capabilities among indigenous firms. Therefore, the question conducting this research is how STI policies in Mexico and South Korea contributed to develop firms’ innovation capabilities in these countries during last decades? The results from this research suggests that STI policy in South Korea was more suitable to boost innovation firms to compete in markets. Data to develop this research was released by the World Intellectual Property Organization (WIPO).

Keywords: Econometric methods, innovation, Mexico, South Korea, STI Policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
1163 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1162 An Improved Algorithm for Channel Estimations of OFDM System based Pilot Signal

Authors: Ahmed N. H. Alnuaimy, Mahamod Ismail, Mohd. A. M. Ali, Kasmiran Jumari, Ayman A. El-Saleh

Abstract:

This paper presents a new algorithm for the channel estimation of the OFDM system based on a pilot signal for the new generation of high data rate communication systems. In orthogonal frequency division multiplexing (OFDM) systems over fast-varying fading channels, channel estimation and tracking is generally carried out by transmitting known pilot symbols in given positions of the frequency-time grid. In this paper, we propose to derive an improved algorithm based on the calculation of the mean and the variance of the adjacent pilot signals for a specific distribution of the pilot signals in the OFDM frequency-time grid then calculating of the entire unknown channel coefficients from the equation of the mean and the variance. Simulation results shows that the performance of the OFDM system increase as the length of the channel increase where the accuracy of the estimated channel will be increased using this low complexity algorithm, also the number of the pilot signal needed to be inserted in the OFDM signal will be reduced which lead to increase in the throughput of the signal over the OFDM system in compared with other type of the distribution such as Comb type and Block type channel estimation.

Keywords: Channel estimation, orthogonal frequency divisionmultiplexing (OFDM), comb type channel estimation, block typechannel estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1161 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
1160 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0

Authors: Naveen Kumar, Shyambihari Prajapati

Abstract:

Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.

Keywords: Industry 4.0, sensor dashboard design, Cyber-physical production system, Interface designer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
1159 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
1158 A Dynamic Composition of an Adaptive Course

Authors: S. Chiali, Z.Eberrichi, M.Malki

Abstract:

The number of framework conceived for e-learning constantly increase, unfortunately the creators of learning materials and educational institutions engaged in e-formation adopt a “proprietor" approach, where the developed products (courses, activities, exercises, etc.) can be exploited only in the framework where they were conceived, their uses in the other learning environments requires a greedy adaptation in terms of time and effort. Each one proposes courses whose organization, contents, modes of interaction and presentations are unique for all learners, unfortunately the latter are heterogeneous and are not interested by the same information, but only by services or documents adapted to their needs. Currently the new tendency for the framework conceived for e-learning, is the interoperability of learning materials, several standards exist (DCMI (Dublin Core Metadata Initiative)[2], LOM (Learning Objects Meta data)[1], SCORM (Shareable Content Object Reference Model)[6][7][8], ARIADNE (Alliance of Remote Instructional Authoring and Distribution Networks for Europe)[9], CANCORE (Canadian Core Learning Resource Metadata Application Profiles)[3]), they converge all to the idea of learning objects. They are also interested in the adaptation of the learning materials according to the learners- profile. This article proposes an approach for the composition of courses adapted to the various profiles (knowledge, preferences, objectives) of learners, based on two ontologies (domain to teach and educational) and the learning objects.

Keywords: Adaptive educational hypermedia systems (AEHS), E-learning, Learner's model, Learning objects, Metadata, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
1157 Investigating Solar Cycles and Media Sentiment Through Advanced NLP Techniques

Authors: Aghamusa Azizov

Abstract:

This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.

Keywords: Solar Activity Correlation, Media Sentiment Analysis, Natural Language Processing, NLP, Historical Event Patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72
1156 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes

Authors: Pandaba Patro, Brundaban Patro

Abstract:

The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.

Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
1155 Incorporating Semantic Similarity Measure in Genetic Algorithm : An Approach for Searching the Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias, Hany T. Alashwal, Rohayanti Hassan, FarhanMohamed

Abstract:

The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm.

Keywords: Gene Ontology, Semantic similarity measure, Genetic algorithm, Ontology search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490