Search results for: review mining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1564

Search results for: review mining.

934 An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das

Abstract:

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
933 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
932 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
931 A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community

Authors: Heejin Yun, Juanjuan Zang

Abstract:

This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.

Keywords: Nostalgia, cultural memory, data mining, online community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
930 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
929 Fuzzy Clustering Analysis in Real Estate Companies in China

Authors: Jianfeng Li, Feng Jin, Xiaoyu Yang

Abstract:

This paper applies fuzzy clustering algorithm in classifying real estate companies in China according to some general financial indexes, such as income per share, share accumulation fund, net profit margins, weighted net assets yield and shareholders' equity. By constructing and normalizing initial partition matrix, getting fuzzy similar matrix with Minkowski metric and gaining the transitive closure, the dynamic fuzzy clustering analysis for real estate companies is shown clearly that different clustered result change gradually with the threshold reducing, and then, it-s shown there is the similar relationship with the prices of those companies in stock market. In this way, it-s great valuable in contrasting the real estate companies- financial condition in order to grasp some good chances of investment, and so on.

Keywords: Fuzzy clustering algorithm, data mining, real estate company, financial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
928 A Modern Review of the Spintronic Technology: Fundamentals, Materials, Devices, Circuits, Challenges, and Current Research Trends

Authors: Muhibul Haque Bhuyan

Abstract:

Spintronic, also termed spin electronics or spin transport electronics, is a kind of new technology, which exploits the two fundamental degrees of freedom- spin-state and charge-state of electrons to enhance the operational speed for the data storage and transfer efficiency of the device. Thus, it seems an encouraging technology to combat most of the prevailing complications in orthodox electron-based devices. This novel technology possesses the capacity to mix the semiconductor microelectronics and magnetic devices’ functionalities into one integrated circuit. Traditional semiconductor microelectronic devices use only the electronic charge to process the information based on binary numbers, 0 and 1. Due to the incessant shrinking of the transistor size, we are reaching the final limit of 1 nm or so. At this stage, the fabrication and other device operational processes will become challenging as the quantum effect comes into play. In this situation, we should find an alternative future technology, and spintronic may be such technology to transfer and store information. This review article provides a detailed discussion of the spintronic technology: fundamentals, materials, devices, circuits, challenges, and current research trends. At first, the fundamentals of spintronics technology are discussed. Then types, properties, and other issues of the spintronic materials are presented. After that, fabrication and working principles, as well as application areas and advantages/disadvantages of spintronic devices and circuits, are explained. Finally, the current challenges, current research areas, and prospects of spintronic technology are highlighted. This is a new paradigm of electronic cum magnetic devices built on the charge and spin of the electrons. Modern engineering and technological advances in search of new materials for this technology give us hope that this would be a very optimistic technology in the upcoming days.

Keywords: Spintronic technology, spin, charge, magnetic devices, spintronic devices, spintronic materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
927 Models of State Organization and Influence over Collective Identity and Nationalism in Spain

Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel

Abstract:

The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.

Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
926 The Future of Hospitals: A Systematic Review in the Field of Architectural Design with a Disruptive Research and Development Approach

Authors: María Araya Léon, Ainoa Abella, Aura Murillo, Ricardo Guasch, Laura Clèries

Abstract:

This article aims to examine scientific theory framed within the term hospitals of the future from a multidisciplinary and cross-sectional perspective. To understand the connection that the various cross-sectional areas, we studied have with architectural spaces and to determine the future outlook of the works examined and how they can be classified into the categories of need/solution, evolution/revolution, collective/individual, and preventive/corrective. The changes currently taking place within the context of healthcare demonstrate how important these projects are and the need for companies to face future changes. A systematic review has been carried out focused on what will the hospitals of the future be like in relation to the elements that form part of their use, design, and architectural space experience, using the WOS database from 2016 to 2019. The large number of works about sensoring & big data and the scarce amount related to the area of materials is worth highlighting. Furthermore, no growth concerning future issues is envisaged over time. Regarding classifications, the articles we reviewed address evolutionary and collective solutions more, and in terms of preventive and corrective solutions, they were found at a similar level. Although our research focused on the future of hospitals, there is little evidence representing this approach. We also detected that, given the relevance of the research on how the built environment influences human health and well-being, these studies should be promoted within the context of healthcare. This article allows to find evidence on the future perspective from within the domain of hospital architecture, in order to create bridges between the productive sector of architecture and scientific theory. This will make it possible to detect R&D opportunities in each analyzed cross-section.

Keywords: Hospitals, trends, architectural space, disruptive approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 299
925 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
924 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

Authors: Pavel Y. Tabakov, Kevin Duffy

Abstract:

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Keywords: Classification, clustering, data minig, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
923 A Genetic Algorithm for Clustering on Image Data

Authors: Qin Ding, Jim Gasvoda

Abstract:

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Keywords: Clustering, data mining, genetic algorithm, image data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
922 Conceptual Multidimensional Model

Authors: Manpreet Singh, Parvinder Singh, Suman

Abstract:

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

Keywords: Multidimensional, data precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
921 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.

Keywords: Higher education, mentoring, professional development, university teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
920 Mining and Visual Management of XML-Based Image Collections

Authors: Khalil Shihab, Nida Al-Chalabi

Abstract:

This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.

Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
919 A Rough Sets Approach for Relevant Internet/Web Online Searching

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.

Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
918 The Impact of Colours on Online Marketing Communications

Authors: Chai-Lee Goi

Abstract:

Colour choice has become a common strategy and correlates highly with marketing. Three broad functions can be identified for colour in a building context especially applied in marketing communications, which are its role as an important parameter in illumination designs, its capacity to influence the visual appearance of a building in a predictable manner and as an aesthetic function. The review of literatures shows that colour has an impact on online marketing communications, and relations between colour, web and marketing communications.

Keywords: Colour, website, marketing communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946
917 Beekeeping in Libya

Authors: M. Keshlaf

Abstract:

Honey bees are the most important insects because of their ecologic and economic impacts. They pollinate more than 200 flowering crop plants resulting in an increased yield. Also, honey bees provide multiple products such as honey, royal jelly, wax, venom, pollen and propolis. Beekeeping has been practiced by Africans in all parts of the continent for many thousands of years. However, there is a little scientific information published worldwide about beekeeping in Libya. This review article aims to shed light on the history and current status of honey bee keeping in Libya.

Keywords: Apis mellifera, Libya, beekeeping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
916 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
915 Exploring the Importance of Knowledge Management for CRM Success

Authors: Aurora Garrido-Moreno, Antonio Padilla-Meléndez, Ana Rosa Del Águila-Obra

Abstract:

After reporting a literature review on Customer Relationship Management (CRM) and knowledge management, some important issued arise, in particular related to the lack of success of CRM strategies implementation. The paper contributes to this proposing an integrated model of CRM success taking into account complementary factors such as organizational factors, technology, knowledge management and customer orientation.

Keywords: knowledge management, CRM, CRM success, organizational factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5450
914 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

Authors: Ganesh Kothapalli, Mohammed Y. Hassan

Abstract:

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Keywords: excavator, fuzzy control, hydraulics, mining, type-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
913 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine

Authors: B. Keawaram, P. Dumrongchai

Abstract:

The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.

Keywords: Mine, survey, terrestrial laser scanner, total station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
912 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: Game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
911 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircrafts have been a hot topic in the modern aircraft world. Electric aircrafts have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, Infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
910 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company

Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour

Abstract:

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Keywords: GeG Company, maintainability, maintenance costs, reliability-center-maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
909 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
908 A Social Decision Support Mechanism for Group Purchasing

Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh

Abstract:

With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.

Keywords: Social network, group decision, text mining, group commerce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
907 Synthesis and Reactions of Sulphone Hydrazides

Authors: Mohamed E. Khalifa

Abstract:

The chemistry of sulphone hydrazide has gained increase interest in both synthetic organic chemistry and biological fields and has considerable value. The therapeutic importance of these compounds is the attractive force to continue research in such a point. The present review covers the literature up to date for the synthesis, reactions and applications of such compounds.

Keywords: Sulphone hydrazide compounds, Reactions, Synthesis, Biological activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195
906 Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran

Authors: M. Cheraghi, B. Lorestani, N. Yousefi

Abstract:

Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.

Keywords: Enrichment factor, Heavy metals, Hyperaccumulator, Phytoremediation, Translocation factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
905 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran

Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh

Abstract:

The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.

Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287