Search results for: object recognition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1386

Search results for: object recognition.

756 Negative Selection as a Means of Discovering Unknown Temporal Patterns

Authors: Wanli Ma, Dat Tran, Dharmendra Sharma

Abstract:

The temporal nature of negative selection is an under exploited area. In a negative selection system, newly generated antibodies go through a maturing phase, and the survivors of the phase then wait to be activated by the incoming antigens after certain number of matches. These without having enough matches will age and die, while these with enough matches (i.e., being activated) will become active detectors. A currently active detector may also age and die if it cannot find any match in a pre-defined (lengthy) period of time. Therefore, what matters in a negative selection system is the dynamics of the involved parties in the current time window, not the whole time duration, which may be up to eternity. This property has the potential to define the uniqueness of negative selection in comparison with the other approaches. On the other hand, a negative selection system is only trained with “normal" data samples. It has to learn and discover unknown “abnormal" data patterns on the fly by itself. Consequently, it is more appreciate to utilize negation selection as a system for pattern discovery and recognition rather than just pattern recognition. In this paper, we study the potential of using negative selection in discovering unknown temporal patterns.

Keywords: Artificial Immune Systems, ComputationalIntelligence, Negative Selection, Pattern Discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
755 Adaptive Block State Update Method for Separating Background

Authors: Youngsuck Ji, Youngjoon Han, Hernsoo Hahn

Abstract:

In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.

Keywords: Block-state, Edge component, Reference backgroundi, Artificial illumination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
754 Ontology Population via NLP Techniques in Risk Management

Authors: Jawad Makki, Anne-Marie Alquier, Violaine Prince

Abstract:

In this paper we propose an NLP-based method for Ontology Population from texts and apply it to semi automatic instantiate a Generic Knowledge Base (Generic Domain Ontology) in the risk management domain. The approach is semi-automatic and uses a domain expert intervention for validation. The proposed approach relies on a set of Instances Recognition Rules based on syntactic structures, and on the predicative power of verbs in the instantiation process. It is not domain dependent since it heavily relies on linguistic knowledge. A description of an experiment performed on a part of the ontology of the PRIMA1 project (supported by the European community) is given. A first validation of the method is done by populating this ontology with Chemical Fact Sheets from Environmental Protection Agency2. The results of this experiment complete the paper and support the hypothesis that relying on the predicative power of verbs in the instantiation process improves the performance.

Keywords: Information Extraction, Instance Recognition Rules, Ontology Population, Risk Management, Semantic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
753 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
752 Skew Detection Technique for Binary Document Images based on Hough Transform

Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P

Abstract:

Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.

Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
751 Pain and Lumbar Muscle Activation before and after Functional Task in Nonspecific Chronic Low Back Pain

Authors: Lídia E. O. Cruz, Adriano P. C. Calvo, Renato J. Soares, Regiane A. Carvalho

Abstract:

Individuals with non-specific chronic low back pain may present altered movement patterns during functional activities. However, muscle behavior before and after performing a functional task with different load conditions is not yet fully understood. The aim of this study is to analyze lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground (with and without load) in individuals with nonspecific chronic low back pain. 20 subjects with nonspecific chronic low back pain and 20 healthy subjects participated in this study. A surface electromyography was performed in the ilio-costal, longissimus and multifidus muscles to evaluate lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground, with and without load. The symptomatic participants had greater lumbar muscle activation compared to the asymptomatic group, more evident in performing the task without load, with statistically significant difference (p = 0,033) between groups for the right multifidus muscle. This study showed that individuals with nonspecific chronic low back pain have higher muscle activation before and after performing a functional task compared to healthy participants.

Keywords: Chronic low back pain, functional task, lumbar muscles, muscle activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
750 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
749 Towards Automatic Recognition and Grading of Ganoderma Infection Pattern Using Fuzzy Systems

Authors: Mazliham Mohd Su'ud, Pierre Loonis, Idris Abu Seman

Abstract:

This paper deals with the extraction of information from the experts to automatically identify and recognize Ganoderma infection in oil palm stem using tomography images. Expert-s knowledge are used as rules in a Fuzzy Inference Systems to classify each individual patterns observed in he tomography image. The classification is done by defining membership functions which assigned a set of three possible hypotheses : Ganoderma infection (G), non Ganoderma infection (N) or intact stem tissue (I) to every abnormalities pattern found in the tomography image. A complete comparison between Mamdani and Sugeno style,triangular, trapezoids and mixed triangular-trapezoids membership functions and different methods of aggregation and defuzzification is also presented and analyzed to select suitable Fuzzy Inference System methods to perform the above mentioned task. The results showed that seven out of 30 initial possible combination of available Fuzzy Inference methods in MATLAB Fuzzy Toolbox were observed giving result close to the experts estimation.

Keywords: Fuzzy Inference Systems, Tomography analysis, Modelizationof expert's information, Ganoderma Infection pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
748 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
747 Swarmed Discriminant Analysis for Multifunction Prosthesis Control

Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily

Abstract:

One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.

Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
746 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
745 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
744 Face Detection in Color Images using Color Features of Skin

Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari

Abstract:

Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.

Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
743 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef. A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronic color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to act as the main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam fixed at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works accurately under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: Robotics manipulator, 5-DOF manipulator, image processing, Color sorting, Pick-and-place.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4219
742 Named Entity Recognition using Support Vector Machine: A Language Independent Approach

Authors: Asif Ekbal, Sivaji Bandyopadhyay

Abstract:

Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.

Keywords: Named Entity (NE), Named Entity Recognition (NER), Support Vector Machine (SVM), Bengali, Hindi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
741 LOD Exploitation and Fast Silhouette Detection for Shadow Volumes

Authors: Mustafa S. Fawad, Wang Wencheng, Wu Enhua

Abstract:

Shadows add great amount of realism to a scene and many algorithms exists to generate shadows. Recently, Shadow volumes (SVs) have made great achievements to place a valuable position in the gaming industries. Looking at this, we concentrate on simple but valuable initial partial steps for further optimization in SV generation, i.e.; model simplification and silhouette edge detection and tracking. Shadow volumes (SVs) usually takes time in generating boundary silhouettes of the object and if the object is complex then the generation of edges become much harder and slower in process. The challenge gets stiffer when real time shadow generation and rendering is demanded. We investigated a way to use the real time silhouette edge detection method, which takes the advantage of spatial and temporal coherence, and exploit the level-of-details (LOD) technique for reducing silhouette edges of the model to use the simplified version of the model for shadow generation speeding up the running time. These steps highly reduce the execution time of shadow volume generations in real-time and are easily flexible to any of the recently proposed SV techniques. Our main focus is to exploit the LOD and silhouette edge detection technique, adopting them to further enhance the shadow volume generations for real time rendering.

Keywords: LOD, perception, Shadow Volumes, SilhouetteEdge, Spatial and Temporal coherence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
740 Intelligent Speaker Verification based Biometric System for Electronic Commerce Applications

Authors: Anastasis Kounoudes, Stephanos Mavromoustakos

Abstract:

Electronic commerce is growing rapidly with on-line sales already heading for hundreds of billion dollars per year. Due to the huge amount of money transferred everyday, an increased security level is required. In this work we present the architecture of an intelligent speaker verification system, which is able to accurately verify the registered users of an e-commerce service using only their voices as an input. According to the proposed architecture, a transaction-based e-commerce application should be complemented by a biometric server where customer-s unique set of speech models (voiceprint) is stored. The verification procedure requests from the user to pronounce a personalized sequence of digits and after capturing speech and extracting voice features at the client side are sent back to the biometric server. The biometric server uses pattern recognition to decide whether the received features match the stored voiceprint of the customer who claims to be, and accordingly grants verification. The proposed architecture can provide e-commerce applications with a higher degree of certainty regarding the identity of a customer, and prevent impostors to execute fraudulent transactions.

Keywords: Speaker Recognition, Biometrics, E-commercesecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
739 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
738 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a realtime Simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three VelmexXSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed Simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: Haptic feedback, MATLAB, Simulink, Strain Gage, Surgical Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212
737 Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production

Authors: I. Sarenkova, I. Ciprovica, I. Cinkmanis

Abstract:

Lactobionic acid is a disaccharide formed from gluconic acid and galactose, and produced by oxidation of lactose. Productivity of lactobionic acid by microbial synthesis can be affected by various factors, and one of them is a presence of potassium, magnesium and manganese ions. In order to extend lactobionic acid production efficiency, it is necessary to increase the yield of lactobionic acid by optimising the fermentation conditions and available substrates for Pseudomonas taetrolens growth. The object of the research was to determinate the application of K2HPO4, MnSO4, MgSO4 × 7H2O salts in different concentration for effective lactose oxidation to lactobionic acid by Pseudomonas taetrolens. Pseudomonas taetrolens NCIB 9396 (NCTC, England) and Pseudomonas taetrolens DSM 21104 (DSMZ, Germany) were used for the study. The acid whey was used as the study object. The content of lactose in whey samples was determined using MilcoScanTM Mars (Foss, Denmark) and high performance liquid chromatography (Shimadzu LC 20 Prominence, Japan). The content of lactobionic acid in whey samples was determined using the high performance liquid chromatography. The impact of studied salts differs, Mn2+ and Mg2+ ions enhanced fermentation instead of K+ ions. Results approved that Mn2+ and Mg2+ ions are necessary for Pseudomonas taetrolens growth. The study results will help to improve the effectiveness of lactobionic acid production with Pseudomonas taetrolens NCIB 9396 and DSM 21104.

Keywords: lactobionic acid, lactose oxidation, Pseudomonas taetrolens, whey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
736 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: Ring recognition, edge detection, X-ray computed tomography, dendrochronology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
735 Semi-Automatic Analyzer to Detect Authorial Intentions in Scientific Documents

Authors: Kanso Hassan, Elhore Ali, Soule-dupuy Chantal, Tazi Said

Abstract:

Information Retrieval has the objective of studying models and the realization of systems allowing a user to find the relevant documents adapted to his need of information. The information search is a problem which remains difficult because the difficulty in the representing and to treat the natural languages such as polysemia. Intentional Structures promise to be a new paradigm to extend the existing documents structures and to enhance the different phases of documents process such as creation, editing, search and retrieval. The intention recognition of the author-s of texts can reduce the largeness of this problem. In this article, we present intentions recognition system is based on a semi-automatic method of extraction the intentional information starting from a corpus of text. This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain. This approach uses the construction of a semi-formal ontology which considered as the conceptualization of the intentional information contained in a text. An experiments on scientific publications in the field of computer science was considered to validate this approach.

Keywords: Information research, text analyzes, intentionalstructure, segmentation, ontology, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
734 Recognition of Obstacles and Providing Different Guidelines and Promotion of Electronic Government in Iran

Authors: E. Asgharizadeh, M. Ajalli, S.R. Safavi.M.M, A. Medghalchi

Abstract:

Electronic Government is one of the special concepts which has been performed successfully within recent decades. Electronic government is a digital, wall-free government with a virtual organization for presenting of online governmental services and further cooperation in different political/social activities. In order to have a successful implementation of electronic government strategy and benefiting from its complete potential and benefits and generally for establishment and applying of electronic government, it is necessary to have different infrastructures as the basics of electronic government with lack of which it is impossible to benefit from mentioned services. For this purpose, in this paper we have managed to recognize relevant obstacles for establishment of electronic government in Iran. All required data for recognition of obstacles were collected from statistical society of involved specialists of Ministry of Communications & Information Technology of Iran and Information Technology Organization of Tehran Municipality through questionnaire. Then by considering of five-point Likert scope and μ =3 as the index of relevant factors of proposed model, we could specify current obstacles against electronic government in Iran along with some guidelines and proposal in this regard. According to the results, mentioned obstacles for applying of electronic government in Iran are as follows: Technical & technological problems, Legal, judicial & safety problems, Economic problems and Humanistic Problems.

Keywords: Government, Electronic Government, InformationTechnology, Obstacles, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
733 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
732 Fingerprint Identification using Discretization Technique

Authors: W. Y. Leng, S. M. Shamsuddin

Abstract:

Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.

Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
731 Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatiana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena Mokur-ool, Nikolay A. Kolchano, Lyubomir I. Aftanas

Abstract:

The aim of the study is to compare behavioral and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. Sixty-three healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. EEG were recorded during execution of error-recognition task in Russian and English language (in all participants) and in native languages (Tuvinian or Yakut Turkic-speaking inhabitants). Reaction time (RT) and quality of task execution were chosen as behavioral measures. Amplitude and cortical distribution of P300 and P600 peaks of ERP were used as a measure of speech-related brain activity. In Tuvinians, there were no differences in the P300 and P600 amplitudes as well as in cortical topology for Russian and Tuvinian languages, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian language were the same as Russians had for native language. In Yakuts, brain reactions during Yakut and English language comprehension had no difference, while the Russian language comprehension was differed from both Yakut and English. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as foreign languages, but Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they do not use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, brain activity, syntactic analysis, native and foreign language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
730 Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults

Authors: Said M. Easa, Maureen J. Reed, Frank Russo, Essam Dabbour, Atif Mehmood, Kathryn Curtis

Abstract:

The main objective of this study was to determine if a minimal increase in road light level (luminance) could lead to improved driving performance among older adults. Older, middleaged and younger adults were tested in a driving simulator following vision and cognitive screening. Comparisons were made for the performance of simulated night driving under two road light conditions (0.6 and 2.5 cd/m2). At each light level, the effects of self reported night driving avoidance were examined along with the vision/cognitive performance. It was found that increasing road light level from 0.6 cd/m2 to 2.5 cd/m2 resulted in improved recognition of signage on straight highway segments. The improvement depends on different driver-related factors such as vision and cognitive abilities, and confidence. On curved road sections, the results showed that driver-s performance worsened. It is concluded that while increasing road lighting may be helpful to older adults especially for sign recognition, it may also result in increased driving confidence and thus reduced attention in some driving situations.

Keywords: Driving, older adults, night-time, road lighting, attention, simulation, curves, signs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
729 Application of a Systemic Soft Domain-Driven Design Framework

Authors: Mohammed Salahat, Steve Wade, Izhar Ul-Haq

Abstract:

This paper proposes a “soft systems" approach to domain-driven design of computer-based information systems. We propose a systemic framework combining techniques from Soft Systems Methodology (SSM), the Unified Modelling Language (UML), and an implementation pattern known as “Naked Objects". We have used this framework in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within the proposed framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to generate a ubiquitous language (soft language) which can be used as the basis for developing an object-oriented domain model. The domain model is further developed using techniques based on the UML and is implemented in software following the “Naked Objects" implementation pattern. We argue that there are advantages from combining and using techniques from different methodologies in this way. The proposed systemic framework is overviewed and justified as multimethodologyusing Mingers multimethodology ideas. This multimethodology approach is being evaluated through a series of action research projects based on real-world case studies. A Peer-Tutoring case study is presented here as a sample of the framework evaluation process

Keywords: SSM, UML, Domain-Driven Design, Soft Domain-Driven Design, Naked Objects, Soft Languag e.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
728 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction

Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai

Abstract:

Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.

Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
727 Energy Conscious Builder Design Pattern with C# and Intermediate Language

Authors: Kayun Chantarasathaporn, Chonawat Srisa-an

Abstract:

Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.

Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000