Search results for: numerical representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2874

Search results for: numerical representation

2244 Linear Maps That Preserve Left Spectrum of Diagonal Quaternionic Matrices

Authors: Geng Yuan, Yiwan Guo, Fahui Zhai, Shuhua Zhang

Abstract:

In this paper, we discuss some properties of left spectrum and give the representation of linear preserver map the left spectrum of diagonal quaternionic matrices.

Keywords: Quaternionic matrix, left spectrum, linear preserver map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
2243 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus

Abstract:

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3981
2242 Numerical Calculation of Coils Filled With Bianisotropic Media

Authors: Nebojsa B. Raicevic, Teodoros S. Prokic, Vladan Golubovic

Abstract:

Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.

Keywords: Bianisotropic media, impedance and Q-factor, Maxwell`s equations, hybrid EEM/BEM method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2241 Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

Authors: Giovanni Incerti

Abstract:

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.

Keywords: Command shaping, residual vibrations, belt transmission, servomechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2240 Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips

Authors: Ch. Nerl, M. Wimmer, P. Hofer, E. Kaschnitz

Abstract:

The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.

Keywords: Aluminium alloys, composite casting, compound casting, continuous casting, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
2239 Numerical and Experimental Assessment of a PCM Integrated Solar Chimney

Authors: J. Carlos Frutos Dordelly, M. Coillot, M. El Mankibi, R. Enríquez Miranda, M. José Jimenez, J. Arce Landa

Abstract:

Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m3/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 °C and allows the activation of PCM panels.

Keywords: Energy storage, passive ventilation, phase changing materials, solar chimney, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
2238 Forming Limit Analysis of DP600-800 Steels

Authors: M. C. Cardoso, L. P. Moreira

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stressstrain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: Advanced high strength steels, forming limit curve, numerical modeling, sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3456
2237 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure

Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu

Abstract:

This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; compared with LIPS-200 life test data. The results of the numerical model are in reasonable agreement with the measured data. Finally, we predicted the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrated that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.

Keywords: Ion thruster, accelerator gird, sputter erosion, lifetime assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
2236 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghasemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) for optimizing numerical test functions is presented. In MLABC, two species are used. The first species employs n colonies where each of them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information. The proposed algorithm is tested on a set of well-known test functions. The results show that MLABC algorithm provides efficiency and robustness to solve numerical functions.

Keywords: Artificial bee colony, cooperative artificial bee colony, multilevel cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
2235 Rheodynamic Lubrication of a Rectangular Squeeze Film Bearing with an Exponential Curvature Variation using Bingham Lubricants

Authors: K. P. Vishwanath, A. Kandasamy

Abstract:

The present work deals with analyses of the effects of bearing curvature and non-Newtonian characteristics on the load capacity of an exponential rectangular squeeze film bearing using Bingham fluids as lubricants. Bingham fluids are characterized by an yield value and hence the formation of a “rigid" core in the region between the plates is justified. The flow is confined to the region between the core and the plates. The shape of the core has been identified through numerical means. Further, numerical solutions for the pressure distribution and load carrying capacity of the bearing for various values of Bingham number and curvature parameter have been obtained. The effects of bearing curvature and non-Newtonian characteristics of the lubricant on the bearing performances have been discussed.

Keywords: rheodynamic lubrication, yield stress, non-Newtonianfluid, Bingham fluid, exponential squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2234 The Numerical Study of Low Level Jets Formation in South Eastern of Iran

Authors: Mehdi Salehi Barough, Saviz Sehat Kashani, A.A. Bidokhti, A.Ranjbar

Abstract:

The presence of cold air with the convergent topography of the Lut valley over the valley-s sloping terrain can generate Low Level Jets (LLJ). Moreover, the valley-parallel pressure gradients and northerly LLJ are produced as a result of the large-scale processes. In the numerical study the regional MM5 model was run leading to achieve an appropriate dynamical analysis of flows in the region for summer and winter. The results of this study show the presence of summer synoptical systems cause the formation of north-south pressure gradients in the valley which could be led to the blowing of winds with the velocity more than 14 ms-1 and vulnerable dust and wind storms lasting more than 120 days. Whereas the presence of cold air masses in the region in winter, cause the average speed of LLJs decrease. In this time downslope flows are noticeable in creating the night LLJs.

Keywords: Cold advection, Low Level Jet, MM5 Model, Pressure gradient

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2233 Experimental and Numerical Study of the Effect of Lateral Wind on the Feeder Airship

Authors: A. Suñol, D. Vucinic, S.Vanlanduit, T. Markova, A. Aksenov, I. Moskalyov

Abstract:

Feeder is one of the airships of the Multibody Advanced Airship for Transport (MAAT) system, under development within the EU FP7 project. MAAT is based on a modular concept composed of two different parts that have the possibility to join; respectively they are the so-called Cruiser and Feeder, designed on the lighter than air principle. Feeder, also named ATEN (Airship Transport Elevator Network), is the smaller one which joins the bigger one, Cruiser, also named PTAH (Photovoltaic modular Transport Airship for High altitude),envisaged to happen at 15km altitude. During the MAAT design phase, the aerodynamic studies of the both airships and their interactions are analyzed. The objective of these studies is to understand the aerodynamic behavior of all the preselected configurations, as an important element in the overall MAAT system design. The most of these configurations are only simulated by CFD, while the most feasible one is experimentally analyzed in order to validate and thrust the CFD predictions. This paper presents the numerical and experimental investigation of the Feeder “conical like" shape configuration. The experiments are focused on the aerodynamic force coefficients and the pressure distribution over the Feeder outer surface, while the numerical simulation cover also the analysis of the velocity and pressure distribution. Finally, the wind tunnel experiment is compared with its CFD model in order to validate such specific simulations with respective experiments and to better understand the difference between the wind tunnel and in-flight circumstances.

Keywords: MAAT project Feeder, CFD simulations, wind tunnel experiments, lateral wind influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
2232 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
2231 A Novel 14 nm Extended Body FinFET for Reduced Corner Effect, Self-Heating Effect, and Increased Drain Current

Authors: Cheng-Hsien Chang, Jyi-Tsong Lin, Po-Hsieh Lin, Hung-Pei Hsu, Chan-Hsiang Chang, Ming-Tsung Shih, Shih-Chuan Tseng, Min-Yan Lin

Abstract:

In this paper, we have proposed a novel FinFET with extended body under the poly gate, which is called EB-FinFET, and its characteristic is demonstrated by using three-dimensional (3-D) numerical simulation. We have analyzed and compared it with conventional FinFET. The extended body height dependence on the drain induced barrier lowering (DIBL) and subthreshold swing (S.S) have been also investigated. According to the 3-D numerical simulation, the proposed structure has a firm structure, an acceptable short channel effect (SCE), a reduced series resistance, an increased on state drain current (I on) and a large normalized I DS. Furthermore, the structure can also improve corner effect and reduce self-heating effect due to the extended body. Our results show that the EBFinFET is excellent for nanoscale device.

Keywords: SOI, FinFET, tri-gate, self-heating effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
2230 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: R. Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: Hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
2229 Simulation of 3D Flow using Numerical Model at Open-channel Confluences

Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat

Abstract:

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
2228 An Experimental and Numerical Investigation of Press Force and Weld Line Displacement of Tailor Welded Blanks in Conventional and Rubber Pad Sheet Metal Forming

Authors: Amir Ansari, Ehsan Shahrjerdi, Ehsan Amini

Abstract:

To investigate the behavior of sheet metals during forming tailor welded blanks (TWB) of various thickness made via Co2 Laser welding are under consideration. These blanks are formed used two different forming methods of rubber as well as the conventional punch and die methods. The main research objective is the effects of using a rubber die instead of a solid one the displacement of the weld line and the press force needed for forming. Specimens with thicknesses of 0.5, 0.6, 0.8 and 1mm are subjected to Erichsen two dimensional tests and the resulted force for each case are compared. This is followed by a theoretical and numerical study of press force and weld line displacement. It is concluded that using rubber pad forming (RPF) causes a reduction in weld line displacement and an increase in the press force.

Keywords: Rubber pad forming, Tailor welded blank, Thickness ratio, Weld line displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
2227 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto

Abstract:

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Keywords: Dam, GeoStudio, rapid drawdown, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
2226 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter

Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki

Abstract:

Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.

Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
2225 UML Modeling for Instruction Pipeline Design

Authors: Vipin Saxena, Deepa Raj

Abstract:

Unified Modeling language (UML) is one of the important modeling languages used for the visual representation of the research problem. In the present paper, UML model is designed for the Instruction pipeline which is used for the evaluation of the instructions of software programs. The class and sequence diagrams are designed & performance is evaluated for instructions of a sample program through a case study.

Keywords: UML, Instruction Pipeline, Class Diagram &Sequence Diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
2224 Internal Loading Distribution in Statically Loaded Ball Bearings, Subjected to a Combined Radial and Thrust Load, Including the Effects of Temperature and Fit

Authors: Mário C. Ricci

Abstract:

A new, rapidly convergent, numerical procedure for internal loading distribution computation in statically loaded, singlerow, angular-contact ball bearings, subjected to a known combined radial and thrust load, which must be applied so that to avoid tilting between inner and outer rings, is used to find the load distribution differences between a loaded unfitted bearing at room temperature, and the same loaded bearing with interference fits that might experience radial temperature gradients between inner and outer rings. For each step of the procedure it is required the iterative solution of Z + 2 simultaneous nonlinear equations – where Z is the number of the balls – to yield exact solution for axial and radial deflections, and contact angles.

Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method, Temperature, Fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
2223 Numerical Study on the Cavity-Induced Piping Failure of Embankment

Authors: H. J. Kim, G. C. Park, K. C. Kim, J. H. Shin

Abstract:

Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed.

Keywords: Cavity, Embankment, Hydraulic gradient, Piping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
2222 Analysis on Influence of Gravity on Convection Heat Transfer in Manned Spacecraft during Terrestrial Test

Authors: Wang Jing, Tao Tao, Li Xiyuan, Pei Yifei

Abstract:

How to simulate experimentally the air flow and heat transfer under microgravity on the ground is important, which has not been completely solved so far. Influence of gravity on air natural convection results in convection heat transfer on ground difference from that on orbit. In order to obtain air temperature and velocity deviations of manned spacecraft during terrestrial thermal test, dimensionless number analysis and numerical simulation analysis are performed. The calculated temperature distribution and velocity distribution of the horizontal test cases are compared to the vertical cases. The results show that the influence of gravity is neglected for facility drawer racks and more obvious for vertical cabins.

Keywords: Gravity, Convection heat transfer, Manned spacecraft, Dimensionless number, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2221 Sizing the Protection Devices to Control Water Hammer Damage

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

The primary objectives of transient analysis are to determine the values of transient pressures that can result from flow control operations and to establish the design criteria for system equipment and devices (such as control devices and pipe wall thickness) so as to provide an acceptable level of protection against system failure due to pipe collapse or bursting. Because of the complexity of the equations needed to describe transients, numerical computer models are used to analyze transient flow hydraulics. An effective numerical model allows the hydraulic engineer to analyze potential transient events and to identify and evaluate alternative solutions for controlling hydraulic transients, thereby protecting the integrity of the hydraulic system. This paper presents the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurs in the transient.

Keywords: Flow Transient, Water hammer, Pipeline System, Surge Tank, Simulation Model, Protection Devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9494
2220 Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load

Authors: J. Arashmehr, G. H. Rahimi, S.F.Rasouli

Abstract:

Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.

Keywords: Grid composite structure, Transverse loadings, Strain measurement, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
2219 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2218 The Application of HLLC Numerical Solver to the Reduced Multiphase Model

Authors: Fatma Ghangir, Andrzej F. Nowakowski, Franck C. G. A. Nicolleau, Thomas M. Michelitsch

Abstract:

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Keywords: Multiphase flow, gas-liquid flow, Godunov schems, Riemann solvers, HLL scheme, HLLC scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
2217 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2216 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: Dam-break flows, deformable beds, finite element method, finite volume method, linear elasticity, Shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
2215 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming

Authors: P. N. Korde, P. P. Bedekar

Abstract:

The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.

Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421