Search results for: rheodynamic lubrication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 50

Search results for: rheodynamic lubrication

50 Rheodynamic Lubrication of a Rectangular Squeeze Film Bearing with an Exponential Curvature Variation using Bingham Lubricants

Authors: K. P. Vishwanath, A. Kandasamy

Abstract:

The present work deals with analyses of the effects of bearing curvature and non-Newtonian characteristics on the load capacity of an exponential rectangular squeeze film bearing using Bingham fluids as lubricants. Bingham fluids are characterized by an yield value and hence the formation of a “rigid" core in the region between the plates is justified. The flow is confined to the region between the core and the plates. The shape of the core has been identified through numerical means. Further, numerical solutions for the pressure distribution and load carrying capacity of the bearing for various values of Bingham number and curvature parameter have been obtained. The effects of bearing curvature and non-Newtonian characteristics of the lubricant on the bearing performances have been discussed.

Keywords: rheodynamic lubrication, yield stress, non-Newtonianfluid, Bingham fluid, exponential squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
49 Effect of Lubrication on the Quantity of Heat Emission of two Spur Gears in Meshing

Authors: S. A. M. Elshourbagy

Abstract:

This paper investigates the effects of lubrication on the quantity of heat emission of two spur gear. System with and without lubrication effected on the quantity of heat induced on the gear box (oil - bearings – gears). Both of lubrication and speed of motor are affected on the performance of gears. Research investigated the lubrication on the system with and without loading as well as the wear of gears and bearing's conditions. Gear box investigated includes the motor, pump, two spur gears, two shafts; speed change used pulleys and belts. Load used equal one weight ones of gear. Lubrication mechanism used jet system (upper and lower jet). Gear box we used system of jet lubrication is perpendicular direction of the contact line between two teeth. Results appeared in this work that the lubrication is the vital parameter which is affected on the performance and durability of gears and bearings. In macroscopic observation, we noted that damage of bearings happened during the absence of lubrication as well as abrasive of wear of teeth. Higher speed of motor without lubrication increased the noise, but in the presence of lubrication was decreased.

Keywords: Lubrication, jet, laser gun, spur gear, temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
48 Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication

Authors: S. S. Gautam, S. Samanta

Abstract:

The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.

Keywords: hydrodynamic bearing, micropolar lubrication, coupling number, characteristic length, perturbation analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
47 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: Acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
46 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing

Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie

Abstract:

Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.

Keywords: Cathodic plasma electrolysis, friction, lubrication, plasma surface texturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
45 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning

Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar

Abstract:

Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.

Keywords: ANOVA, MQL, regression analysis, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 310
44 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning

Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar

Abstract:

Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.

Keywords: ANOVA, MQL, regression analysis, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
43 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A.Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: Bone Necrosis, Bone Drilling, Thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
42 An Experimental Method for Measuring Clamping Force in Bolted Connections and Effect of Bolt Threads Lubrication on Its Value

Authors: E. Hemmati Vand, R. H. Oskouei, T. N. Chakherlou

Abstract:

In this paper, the details of an experimental method to measure the clamping force value at bolted connections due to application of wrenching torque to tighten the nut have been presented. A simplified bolted joint including a holed plate with a single bolt was considered to carry out the experiments. This method was designed based on Hooke-s law by measuring compressive axial strain of a steel bush placed between the nut and the plate. In the experimental procedure, the values of clamping force were calculated for seven different levels of applied torque, and this process was repeated three times for each level of the torque. Moreover, the effect of lubrication of threads on the clamping value was studied using the same method. In both conditions (dry and lubricated threads), relation between the torque and the clamping force have been displayed in graphs.

Keywords: Clamping force, Bolted joints, Experimental method, Lubrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7596
41 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: Multi-level gear oil, engine oil, viscosity, abrasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
40 Vibration, Lubrication and Machinery Consideration for a Mixer Gearbox Related to Iran Oil Industries

Authors: Omid A. Zargar

Abstract:

In this paper, some common gearboxes vibration analysis methods and condition monitoring systems are explained. In addition, an experimental gearbox vibration analysis is discussed through a critical case history for a mixer gearbox related to Iran oil industry. The case history also consists of gear manufacturing (machining) recommendations, lubrication condition of gearbox and machinery maintenance activities that caused reduction in noise and vibration of the gearbox. Besides some of the recent patents and innovations in gearboxes, lubrication and vibration monitoring systems explained. Finally micro pitting and surface fatigue in pinion and bevel of mentioned horizontal to vertical gearbox discussed in details.

Keywords: Gear box, condition monitoring, time wave form (TWF), fast Fourier transform (FFT), gear mesh frequency (GMF), Shock Pulse measurement (SPM), bearing condition unit (BCU), pinion, bevel gear, micro pitting, surface fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4239
39 Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Authors: Dinesh Setti, Sudarasan Ghosh, P. Venkateswara Rao

Abstract:

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.

Keywords: MQL, Nanofluid, Taguchi method, Ti-6Al-4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3968
38 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
37 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Authors: S. M. Ali, N. R. Dhar

Abstract:

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Keywords: ANN, MQL, Surface Roughness, Tool Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3808
36 On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect

Authors: Subrata Das, Sisir Kumar Guha

Abstract:

The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.

Keywords: Hydrodynamic lubrication, steady-state, micropolar lubricant, turbulent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
35 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
34 Friction and Wear Characteristics of Pongamia Oil Based Blended Lubricant at Different Load and Sliding Distance

Authors: Yashvir Singh

Abstract:

Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non -toxic and environmental friendly. This paper outlines the friction and wear characteristics of Pongamia oil (PO) contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, PO was blended in the ratios 15, 30 and 50% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 3.8 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms were abrasive and the adhesive wear. During testing, the lowest wear was found with the addition of 15% PO, and above this contamination, the wear rate was increased considerably. With increase in load, viscosity of all the bio-lubricants increases and meets the ISO VG 100 requirement at 40 oC except PB 50. The addition of PO in the base lubricant acted as a very good lubricant additive which reduced the friction and wear scar diameter during the test. It has been concluded that the PB 15 can act as an alternative lubricant to increase the mechanical efficiency at 3.8 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.

Keywords: Pongamia oil, sliding velocity, load, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
33 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
32 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

Authors: M. Bayareh, S. Mortazavi

Abstract:

The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.

Keywords: drop migration, shear flow, front-tracking method, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
31 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
30 Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Authors: B. Chetti

Abstract:

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: Four-lobe bearings, dynamic characteristics, stabilityanalysis, micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
29 Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives

Authors: Gabi N. Nehme

Abstract:

The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm.

Keywords: Wear, SEM, EDS, friction, lubricants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
28 The Anti-Noise and Anti-Wear Systems for Railways

Authors: Brigita Altenbaher

Abstract:

In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.

Keywords: Active protection, composite material, lubrication, noise reduction, reduction at source, railway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
27 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material

Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike

Abstract:

Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.

Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
26 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: Axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
25 Reciprocating Compressor Optimum Design and Manufacturing with Respect to Performance, Reliability and Cost

Authors: A. Almasi

Abstract:

Reciprocating compressors are flexible to handle wide capacity and condition swings, offer a very efficient method of compressing almost any gas mixture in wide range of pressure, can generate high head independent of density, and have numerous applications and wide power ratings. These make them vital component in various units of industrial plants. In this paper optimum reciprocating compressor configuration regarding interstage pressures, low suction pressure, non-lubricated cylinder, speed of machine, capacity control system, compressor valve, lubrication system, piston rod coating, cylinder liner material, barring device, pressure drops, rod load, pin reversal, discharge temperature, cylinder coolant system, performance, flow, coupling, special tools, condition monitoring (including vibration, thermal and rod drop monitoring), commercial points, delivery and acoustic conditions are presented.

Keywords: Design, optimum, reciprocating compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9801
24 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.

Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
23 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
22 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals

Authors: Mohammad Javad Shariatzadeh, Dana Grecov

Abstract:

The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.

Keywords: Gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
21 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208