Search results for: lessons learned from global financial crisis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2086

Search results for: lessons learned from global financial crisis

1456 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
1455 An Agile, Intelligent and Scalable Framework for Global Software Development

Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima

Abstract:

Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.

Keywords: Agile project management, agile framework, distributed teams, global software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708
1454 Using Automated Database Reverse Engineering for Database Integration

Authors: M. R. Abbasifard, M. Rahgozar, A. Bayati, P. Pournemati

Abstract:

One important problem in today organizations is the existence of non-integrated information systems, inconsistency and lack of suitable correlations between legacy and modern systems. One main solution is to transfer the local databases into a global one. In this regards we need to extract the data structures from the legacy systems and integrate them with the new technology systems. In legacy systems, huge amounts of a data are stored in legacy databases. They require particular attention since they need more efforts to be normalized, reformatted and moved to the modern database environments. Designing the new integrated (global) database architecture and applying the reverse engineering requires data normalization. This paper proposes the use of database reverse engineering in order to integrate legacy and modern databases in organizations. The suggested approach consists of methods and techniques for generating data transformation rules needed for the data structure normalization.

Keywords: Reverse Engineering, Database Integration, System Integration, Data Structure Normalization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
1453 Discrete Polynomial Moments and Savitzky-Golay Smoothing

Authors: Paul O'Leary, Matthew Harker

Abstract:

This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.

Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
1452 Knowledge Management (KM) Practices - A Study of KM Adoption among Doctors in Kuwait

Authors: B. Alajmi, L. Marouf, A. S. Chaudhry

Abstract:

Knowledge management is considered as an important factor in improving health care services. KM facilitates the transfer of existing knowledge and the development of new knowledge in hospitals. This paper reviews practices adopted by doctors in Kuwait for capturing, sharing, and generating knowledge. It also discusses the perceived impact of KM practices on performance of hospitals. Based on a survey of 277 doctors, the study found that KM practices among doctors in the sampled hospitals were not very effective. Little attention was paid to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, good km practices were perceived by doctors to have a positive impact on performance of hospitals. It was concluded that through effective KM practices hospitals could improve the services they provide. Documentation of best practices and capturing of lessons learnt for re-use of knowledge could help transform the hospitals into learning organizations.

Keywords: Health Sector, Hospitals, Knowledge Management, Kuwait, Tools and Practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
1451 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.

Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
1450 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education

Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis

Abstract:

In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.

Keywords: Computational Geometry, Education, e-Governance, Semantic Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1449 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance

Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman

Abstract:

Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.

Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
1448 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
1447 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.

Keywords: Copper prices, prediction model, neural network, time series forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
1446 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1445 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1444 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
1443 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: Absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1442 Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification

Authors: S. Hma Salah, H. Du, N. Al-Jawad

Abstract:

Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.

Keywords: Ethnicity identification, fusion, local binary patterns, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
1441 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
1440 A Content Analysis of Sustainability Reporting to Frame the Heterogeneity in Corporate Environment Sustainability Practices

Authors: Venkataraman Sankaranarayanan, Sougata Ray

Abstract:

While extant research has examined many aspects of differential corporate environmental outcomes and behavior, a holistic and integrated view of heterogeneity in corporate environment sustainability (CES) practices remains a puzzle to be fully unraveled – its extent and nature, its relationship to macro or micro level influences, or strategic orientations. Such a perspective would be meaningful for the field given notable strides in CES practices and the corporate social responsibility agenda over the last two decades, in the backdrop of altered global socio-political sensitivities and technological advances. To partly address this gap, this exploratory research adopted a content analysis approach to code patterns in the sustainability disclosures of the 160 largest global firms spread over 8 years. The sample of firms spanned seven industries, nine countries and three continents thereby presenting data rich and diverse enough in several dimensions to be representative of global heterogeneity in CES practices. Through a factor analysis of the coded data, four strategic CES orientations were extracted through the analysis, that effectively straddles most of the variation observed in current CES practices – one that seeks to reduce environmental damage on account of the firm’s operations, another that prioritizes minimalism, a third that focuses on broader ecological status quo, and a final one that champions the ‘business of green’, extending the CES agenda beyond the firm’s boundaries. These environment sustainability strategy orientations are further examined to elicit prominent patterns and explore plausible antecedents.

Keywords: Corporate sustainability, corporate social responsibility, corporate environmental management, environmental strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1439 Changing Roles and Skills of Urban Planners in the Turkish Planning System

Authors: Fatih Eren

Abstract:

This research aims to find an answer to the question of which knowledge and skills do the Turkish urban planners need in their business practice. Understanding change in cities, making a prediction, making an urban decision and putting it into practice, working together with actors from different organizations from various academic disciplines, persuading people to accept something and developing good personal and professional relationships have become very complex and difficult in today’s world. The truth is that urban planners work in many institutions under various positions which are not similar to each other by field of activity and all planners are forced to develop some knowledge and skills for success in their business in Turkey. This study targets to explore what urban planners do in the global information age. The study is the product of a comprehensive nation-wide research. In-depth interviews were conducted with 174 experienced urban planners, who work in different public institutions and private companies under varied positions in the Turkish Planning System, to find out knowledge and skills needed by next-generation urban planners. The main characteristics of next-generation urban planners are defined; skills that planners needed today are explored in this paper. Findings show that the positivist (traditional) planning approach has given place to anti-positivist planning approaches in the Turkish Planning System so next-generation urban planners who seek success and want to carve out a niche for themselves in business life have to equip themselves with innovative skills. The result section also includes useful and instructive findings for planners about what is the meaning of being an urban planner and what is the ideal content and context of planning education at universities in the global age.

Keywords: The global information age, urban planners, innovative job skills, planning education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
1438 The Psychological Effects of the COVID-19 Pandemic on Non-Healthcare Migrant Workers in a Construction Company in Saudi Arabia

Authors: Viviane Nascimento, Dania Mehmod

Abstract:

Introduction: The Coronavirus (COVID-19) disease was firstly reported in Asia at the end of 2019 and became a pandemic at the beginning of 2020. It resulted in a significant impact over the global economy and the health care systems around the world. The immediate measure adopted worldwide to contain the virus was mainly the lockdown and curfews. This certainly had an important impact on expats workers due to the financial insecurity, culture barrier and distance from the family. Saudi Arabia has one of the largest flows of foreign workers in the world and expats are the majority of the workforce. The aim of this essay was assessing the psychological impact of COVID-19 in non-health care expats living in Saudi Arabia. Methods: The study was conducted in a construction company in Riyadh with non-health care employees. The cross-sectional study protocol was approved by the company's executive management. Employees who verbally agreed to participate in the study were asked to anonymously answer a questionnaire validated for behavioral research (DASS-21). In addition, a second questionnaire was created to assess feelings and emotions. Results: More than a third of participants screened positive for one or more psychological symptoms (depression, anxiety and stress) on the DASS-21 scale. Moreover, it was observed an increase on negative feelings on the additional questionnaire. Conclusion: This study reveals an increase on negative feelings and psychological symptoms among non-health care migrant workers during the COVID-19 pandemic. In light of this, it is crucial to understand the emotional effects caused by the pandemic on migrant workers in order to create supportive and informative strategies minimizing the emotional impact on this vulnerable group.

Keywords: COVID-19 pandemic, Saudi Arabia, psychological effects, migrant workers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
1437 Linguistic Competence Analysis and the Development of Speaking Instructional Material

Authors: Felipa M. Rico

Abstract:

Linguistic oral competence plays a vital role in attaining effective communication. Since the English language is considered as universally used language and has a high demand skill needed in the work-place, mastery is the expected output from learners. To achieve this, learners should be given integrated differentiated tasks which help them develop and strengthen the expected skills. This study aimed to develop speaking instructional supplementary material to enhance the English linguistic competence of Grade 9 students in areas of pronunciation, intonation and stress, voice projection, diction and fluency. A descriptive analysis was utilized to analyze the speaking level of performance of the students in order to employ appropriate strategies. There were two sets of respondents: 178 Grade 9 students selected through a stratified sampling and chosen at random. The other set comprised English teachers who evaluated the usefulness of the devised teaching materials. A teacher conducted a speaking test and activities were employed to analyze the speaking needs of students. Observation and recordings were also used to evaluate the students’ performance. The findings revealed that the English pronunciation of the students was slightly unclear at times, but generally fair. There were lapses but generally they rated moderate in intonation and stress, because of other language interference. In terms of voice projection, students have erratic high volume pitch. For diction, the students’ ability to produce comprehensible language is limited, and as to fluency, the choice of vocabulary and use of structure were severely limited. Based on the students’ speaking needs analyses, the supplementary material devised was based on Nunan’s IM model, incorporating context of daily life and global work settings, considering the principle that language is best learned in the actual meaningful situation. To widen the mastery of skill, a rich learning environment, filled with a variety instructional material tends to foster faster acquisition of the requisite skills for sustained learning and development. The role of IM is to encourage information to stick in the learners’ mind, as what is seen is understood more than what is heard. Teachers say they found the IM “very useful.” This implied that English teachers could adopt the materials to improve the speaking skills of students. Further, teachers should provide varied opportunities for students to get involved in real life situations where they could take turns in asking and answering questions and share information related to the activities. This would minimize anxiety among students in the use of the English language.

Keywords: Fluency, intonation, instructional materials, linguistic competence, pronunciation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1436 Development of a GPS Buoy for Ocean Surface Monitoring: Initial Results

Authors: Anuar Mohd Salleh, Mohd Effendi Daud

Abstract:

This study presents a kinematic positioning approach that uses a global positioning system (GPS) buoy for precise ocean surface monitoring. The GPS buoy data from the two experiments are processed using an accurate, medium-range differential kinematic technique. In each case, the data from a nearby coastal site are collected at a high rate (1 Hz) for more than 24 hours, and measurements are conducted in neighboring tidal stations to verify the estimated sea surface heights. The GPS buoy kinematic coordinates are estimated using epoch-wise pre-elimination and a backward substitution algorithm. Test results show that centimeterlevel accuracy can be successfully achieved in determining sea surface height using the proposed technique. The centimeter-level agreement between the two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) current tidal gauge stations.

Keywords: Global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
1435 Digitization of Television Broadcasting in Nigeria Review

Authors: Samaila Balarabe

Abstract:

Information and Communication Technology (ICT) has opened up new and robust ways of sending and receiving information at global level. Any type of information including voice and video is sent to the diverse publics, who equally have variety of choices. Thus, the development of any nation is tied to efficient information dissemination. In Nigeria, television broadcasting started in 1959 with the establishment of the Western Nigeria Television (WNTV) by the opposition leader, Chief Obafemi Awolowo. Later on, the government took over the station and fully controlled it. Subsequently, regional stations were opened to propagate government policies and programs. The television industry in Nigeria continued to grow in terms of viewership and number with over fifty national television stations and twenty five private ones. Thus, existing documents on digitization of television broadcasting industry and related literature were used as the main source of information. Therefore, this paper analyses the efforts being made by the Nigerian government through its ICT policy towards digitization of its television broadcasting in order to cope with the global trend. Recommendations are proffered with a view to achieving the target goal.

Keywords: Broadcasting, Digitization, Information, Television.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9529
1434 Shaping Traditional Chinese Culture in Contemporary Fashion: ‘Guochao’ as a Rising Aesthetic and the Case Study of the Designer Brand Angel Chen

Authors: Zhe Ginnie Wang

Abstract:

With the unprecedented spread of cultural Chinese fashion design in the global fashion system, the under-identified ‘Guochao’ aesthetic that has emerged in the global market needs to be academically emphasized with a methodological approach looking at the Western-Eastern cultural hybridization present in fashion visualization. Through an in-depth and comprehensive investigation of a representative international-based Chinese designer, Angel Chen’s fashion show ‘Madam Qing’, this paper provides a methodological approach on how a form of traditional culture can be effectively extracted and applied to modern design using the most effective techniques. The central approach examined in this study involves creating aesthetic revolutions by addressing Chinese cultural identity through re-creating and modernizing traditional Chinese culture in design.

Keywords: Style modernization, design identity, fashion show, Guochao, Chinese culture, Angel Chen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1433 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric

Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui

Abstract:

This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.

Keywords: Anisotropy, Off-axis tensile test, strain fields, Textile woven fabric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1432 The Framework for Adaptive Games for Mobile Application Using Neural Networks

Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati

Abstract:

The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform

Keywords: Adaptive games, neural networks, mobile games, BlackBerry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
1431 Making India a Telecom Manufacturing Hub: Emerging Issues and Challenges

Authors: Utpal Chattopadhyay

Abstract:

Indian telecom services industry has been witnessing a stupendous growth since 1990s. Over the years, subscriber base has grown steadily and it crossed 950 million marks in March 2012. India with second largest subscriber base also offers one of the lowest call tariffs in the world. But in the euphoria of high growth in services, the equipment manufacturing received least priority. India mainly depends on imported components from China. Of late, it is realized that lack of domestic manufacturing may pose a serious challenge to India-s continued success in the telecom sector. Therefore, the National Telecom Policy 2012 aims at developing a strong equipment manufacturing base within India. This paper realistically assesses India-s true potential in equipment manufacturing and seeks to identify the emerging issues and challenges before the Indian telecom equipment manufacturing sector while it tries to make a transition from an import-dependent industry to a global manufacturing hub.

Keywords: Equipment manufacturing, global hub, Indian telecom industry, issues and challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
1430 Dislocation Modelling of the 1997-2009 High-Precision Global Positioning System Displacements in Darjiling- Sikkim Himalaya, India

Authors: Kutubuddin Ansari, Malay Mukul, Sridevi Jade

Abstract:

We used high-precision Global Positioning System (GPS) to geodetically constrain the motion of stations in the Darjiling-Sikkim Himalayan (DSH) wedge and examine the deformation at the Indian-Tibetan plate boundary using IGS (International GPS Service) fiducial stations. High-precision GPS based displacement and velocity field was measured in the DSH between 1997 and 2009. To obtain additional insight north of the Indo-Tibetan border and in the Darjiling-Sikkim-Tibet (DaSiT) wedge, published velocities from four stations J037, XIGA, J029 and YADO were also included in the analysis. India-fixed velocities or the back-slip was computed relative to the pole of rotation of the Indian Plate (Latitude 52.97 ± 0.22º, Longitude - 0.30 ± 3.76º, and Angular Velocity 0.500 ± 0.008º/ Myr) in the DaSiT wedge. Dislocation modelling was carried out with the back-slip to model the best possible solution of a finite rectangular dislocation or the causative fault based on dislocation theory that produced the observed back-slip using a forward modelling approach. To find the best possible solution, three different models were attempted. First, slip along a single thrust fault, then two thrust faults and in finally, three thrust faults were modelled to simulate the back-slip in the DaSiT wedge. The three-fault case bests the measured displacements and is taken as the best possible solution.

Keywords: Global Positioning System, Darjiling-Sikkim Himalaya, Dislocation modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1429 Methods for Case Maintenance in Case-Based Reasoning

Authors: A. Lawanna, J. Daengdej

Abstract:

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1428 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann

Abstract:

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.

Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1427 Continuous Wave Interference Effects on Global Position System Signal Quality

Authors: Fang Ye, Han Yu, Yibing Li

Abstract:

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882