Search results for: hybrid systems and recurrent neural networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6828

Search results for: hybrid systems and recurrent neural networks.

6198 Hand Gesture Recognition: Sign to Voice System (S2V)

Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo

Abstract:

Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.

Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
6197 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
6196 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
6195 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: Balanced truncation, Clustering, Dominant pole, Hankel norm, Model reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
6194 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djameleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
6193 Client Server System for e-Services Access Using Mobile Communications Networks

Authors: Eugen Pop, Mihai Barbos, Razvan Lupu

Abstract:

The client server systems using mobile communications networks for data transmission became very attractive for many economic agents, in the purpose of promoting and offering electronic services to their clients. E-services are suitable for business developing and financial benefits increasing. The products or services can be efficiently delivered to a large number of clients, using mobile Internet access technologies. The clients can have access to e-services, anywhere and anytime, with the support of 3G, GPRS, WLAN, etc., channels bandwidth, data services and protocols. Based on the mobile communications networks evolution and development, a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers is established. These will lead to a high level of integration of IT&C resources and will facilitate the value added services delivery through the mobile communications networks. In this paper it is presented a client server system, for e-services access, with Smartphones and PDA-s mobile software applications, installed on Symbian and Windows Mobile operating systems.

Keywords: Client server system, e-services access, mobile communications, PDA, Smartphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
6192 On the Analysis of Localization Accuracy of Wireless Indoor Positioning Systems using Cramer's Rule

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

This paper presents an analysis of the localization accuracy of indoor positioning systems using Cramer-s rule via IEEE 802.15.4 wireless sensor networks. The objective is to study the impact of the methods used to convert the received signal strength into the distance that is used to compute the object location in the wireless indoor positioning system. Various methods were tested and the localization accuracy was analyzed. The experimental results show that the method based on the empirical data measured in the non line-of-sight (NLOS) environment yield the highest localization accuracy; with the minimum error distance less than 3 m.

Keywords: Indoor positioning systems, localization accuracy, wireless networks, Cramer's rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
6191 Effect of Nutrient Supply on Yield and Photosynthetic Parameters of Maize Hybrids

Authors: L. G. Karancsi, K. Máriás

Abstract:

We examined the crop yield results of hybrids in 2012. We found out that in the control treatments the lowest yield was reached with the hybrid PR37M81: 10,012 kg ha-1. The highest yield was in case of hybrid P37N01: 11,581 kg ha-1. As we raised the nutrient doses the lowest yield of all examined nutrient levels was in case of hybrid PR37M81. We measured at N60+PK nutrient level 12,517 kg ha-1, at N120+PK nutrient level 12,760 kg ha-1, and at N150+PK nutrient level 12,535 kg ha-1 yield results. At N60+PK and N120+PK nutrient level the highest yield was reached with the hybrid P9494 (N60+PK: 13,970 kg ha-1, N120+PK: 13,871 kg ha-1). In case of the N150+PK fertilization treatment the hybrid P37N01 gave the highest yield results (13,962 kg ha-1).

Keywords: Hybrids, maize, nutrient levels, SPAD and LAI values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
6190 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6189 Hybrid Minimal Repair for a Serial System

Authors: Ellysa Nursanti, Anas Ma'ruf, Tota Simatupang, Bermawi P. Iskandar

Abstract:

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.

Keywords: Hybrid minimal repair, opportunistic maintenance, preventive maintenance, series system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
6188 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria

Authors: T. Tahri, A. Bettahar, M. Douani

Abstract:

In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.

Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
6187 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
6186 Connected Objects with Optical Rectenna for Wireless Information Systems

Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli

Abstract:

Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.

Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
6185 Color Shift of Printing with Hybrid Halftone Images for Overlay Misalignment

Authors: Xu Guoliang, Tan Qingping

Abstract:

Color printing proceeds with multiple halftone separations overlay. Because of separation overlay misalignment in printing, the percentage of different primary color combination may vary and it will result in color shift. In traditional printing procedure with AM halftone, every separation has different screening angle to make the superposition pattern in a random style, which will reduce the color shift. To evaluate the color shift of printing with hybrid halftoning, we simulate printing procedure with halftone images overlay and calculate the color difference between expected color and color in different overlay misalignment configurations. The color difference for hybrid halftone and AM halftone is very close. So the color shift for hybrid halftone is acceptable with current color printing procedure.

Keywords: color printing, AM halftone, Hybrid halftone, misalignment, color shift, Neugebauer Color Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
6184 Process Design and Application of Aerobic Hybrid Bioreactor in the Treatment of Municipal Wastewater

Authors: Sushovan Sarkar, Debabrata Mazumder

Abstract:

Hybrid bioreactor having both suspended-growth and attached-growth bacteria is found a novel and excellent bioreactor system for treating the municipal wastewater containing inhibitory substrates too. In this reactor a fraction of substrate is used by suspended biomass and the remaining by attached biomass resulting in the competition between the two growths for the substrate. The combination of suspended and attached growth provides the system with enhanced biomass concentration and sludge age more than those in ASP. Similar to attached growth system, the hybrid bioreactor ensures considerable efficiency for treating toxic and refractory substances in wastewater. For the process design of hybrid bioreactor a suitable mathematical model is required. Although various mathematical models were developed on hybrid bioreactor in due course of time in earlier research works, none of them was found having a specific simplified solution of the corresponding models and without having any drawback. To overcome this drawback authors already developed a simplified mathematical model for process design of a hybrid bioreactor. The present paper briefly highlights on the various aspects of process design of an aerobic hybrid bioreactor for the treatment of municipal wastewater.

Keywords: Hybrid bioreactor, mathematical model, process design, application, municipal wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
6183 A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks

Authors: F. O. Aron, T. O. Olwal, A. Kurien, M. O. Odhiambo

Abstract:

A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.

Keywords: Topology Control, Wireless Mesh Networks, Backbone, Energy Efficiency, Localized Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
6182 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
6181 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
6180 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System

Authors: R. Ghasemi, M. R. Rahimi Khoygani

Abstract:

This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.

Keywords: Adaptive Neural Controller, Nonlinear Dynamical, Neural Network, RBF, Driven Pendulum, Position Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
6179 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
6178 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam

Abstract:

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Keywords: Error correcting output code, combining classifiers, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
6177 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network

Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim

Abstract:

Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.

Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
6176 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
6175 Seismic Behavior and Loss Assessment of High-Rise Buildings with Light Gauge Steel-Concrete Hybrid Structure

Authors: Bing Lu, Shuang Li, Hongyuan Zhou

Abstract:

The steel-concrete hybrid structure has been extensively employed in high-rise buildings and super high-rise buildings. The light gauge steel-concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a type of steel-concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high-rise buildings with three different concrete hybrid structures were investigated through finite element software. The three concrete hybrid structures are reinforced concrete column-steel beam (RC-S) hybrid structure, concrete-filled steel tube column-steel beam (CFST-S) hybrid structure, and tubed concrete column-steel beam (TC-S) hybrid structure. The nonlinear time-history analysis of three high-rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high-rise buildings were superior. Under extremely rare earthquakes, the maximum inter-story drifts of three high-rise buildings are significantly lower than 1/50. The inter-story drift and floor acceleration of high-rise building with CFST-S hybrid structure were bigger than those of high-rise buildings with RC-S hybrid structure, and smaller than those of high-rise building with TC-S hybrid structure. Then, based on the time-history analysis results, the post-earthquake repair cost ratio and repair time of three high-rise buildings were predicted through an economic performance analysis method proposed in FEMA-P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC-S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.

Keywords: seismic behavior, loss assessment, light gauge steel, concrete hybrid structure, high-rise building, time-history analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
6174 Secure Socket Layer in the Network and Web Security

Authors: Roza Dastres, Mohsen Soori

Abstract:

In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.

Keywords: Secure Socket Layer, Security of networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
6173 Communication in a Heterogeneous Ad Hoc Network

Authors: C. Benjbara, A. Habbani

Abstract:

Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.

Keywords: Ad hoc, heterogeneous, ID-Node, OLSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
6172 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
6171 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks

Authors: Tarek M. Mahmoud

Abstract:

Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.

Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
6170 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
6169 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116