Search results for: Systems Analysis and Design
14031 Application of Customer Relationship Management Systems in Business: Challenges and Opportunities
Authors: K. Liagkouras, K. Metaxiotis
Abstract:
Customer relationship management (CRM) systems in business are a reality of the contemporary business world for the last decade or so. Still, there are grey areas regarding the successful implementation and operation of CRM systems in business. This paper, through the systematic study of the CRM implementation paradigm, attempts to identify the most important challenges and opportunities that the CRM systems face in a rapidly changing business world.
Keywords: Customer Relationship Management, CRM, Business, Information Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500114030 Performance Analysis of Multiuser Diversity in Multiuser Two-Hop Decode-and-Forward Cooperative Multi-Relay Wireless Networks
Authors: Mamoun F. Al-Mistarihi, Rami Mohaisen
Abstract:
Cooperative diversity (CD) has been adopted in many communication systems because it helps in improving performance of the wireless communication systems with the help of the relays that emulate the multiple antenna terminals. This work aims to provide the derivation of the performance analysis expressions of the multiuser diversity (MUD) in the two-hop cooperative multi-relay wireless networks (TCMRNs). Considering the work analysis, we provide analytically the derivation of a closed form expression of the two most commonly used performance metrics namely, the outage probability and the symbol error probability (SEP) for the fixed decode-and-forward (FDF) protocol with MUD.
Keywords: Cooperative diversity (CD), fixed decode-andforward(FDF), multiuser diversity (MUD) , two - hop cooperative multi-relay wireless networks (TCMRN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154414029 A Generalized Framework for Working with Multiagent Systems
Authors: Debal Saha, NirmalBaranHui
Abstract:
The present paper discusses the basic concepts and the underlying principles of Multi-Agent Systems (MAS) along with an interdisciplinary exploitation of these principles. It has been found that they have been utilized for lots of research and studies on various systems spanning across diverse engineering and scientific realms showing the need of development of a proper generalized framework. Such framework has been developed for the Multi-Agent Systems and it has been generalized keeping in mind the diverse areas where they find application. All the related aspects have been categorized and a general definition has been given where ever possible.
Keywords: Generalized framework, multiagent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179214028 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System
Authors: R. Mahjoub, K. Maghsoudi Mehraban
Abstract:
In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.
Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51014027 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.
Keywords: Parallelogram Quadrature Mirror Filter Bank, Doubly Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted Least Squares Algorithm, Digital All-Pass Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154714026 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
Authors: James Kuria, John Kihiu
Abstract:
This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257514025 Design of Saddle Support for Horizontal Pressure Vessel
Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma
Abstract:
This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.
Keywords: ANSYS, Pressure Vessel, Saddle, Support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617014024 Assessment of Performance Measures of Large-Scale Power Systems
Authors: Mohamed A. El-Kady, Badr M. Alshammari
Abstract:
In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.
Keywords: Power systems; large-scale analysis, reliability; performance assessment, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185414023 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124714022 Fuzzy Optimization in Metabolic Systems
Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu
Abstract:
The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.
Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202814021 An Optimized Design of Non-uniform Filterbank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.Keywords: Tree structure, NUFB, QMF, NPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174814020 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.
Keywords: Generalized matrix approach, linear analysis, renewable applications, switched reluctance generator, SRG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61814019 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel
Authors: Nilrudra Mandal, B Doloi, B Mondal
Abstract:
An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 278814018 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189914017 Ontology for Semantic Enrichment of Radio Frequency Identification Systems
Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny
Abstract:
Radio Frequency Identification (RFID) has become a key technology in the emerging concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems developed by different vendors that use different data formats and structures. This heterogeneity poses a challenge in developing real-life IoT systems with RFID, as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning.Keywords: IoT, RFID, Semantic, sparql, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187814016 Knitting Stitches’ Manipulation for Catenary Textile Structures
Authors: Virginia Melnyk
Abstract:
This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.
Keywords: Architectural materials, catenary structures, knitting fabrication, textile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83814015 Interaction at a Distance – An Approach for Redesigning for Distance Education
Authors: Martin Henkel
Abstract:
Different forms of interaction are an integral part of modern courses. Traditional courses held on-campus might focus on teacher-student interaction, or student-student interaction, or both. However when these traditional on-campus courses are to be held as distance courses there is a risk that these well-designed interactions will be difficult or impossible to uphold. For example, studentstudent interaction in traditional project assignments might not work well if the students are scattered across the world. Thus, even a welldesigned traditional on-site course cannot without modification be turned into a distance course. Traditional on-site courses simply have to be redesigned to become true distance courses. This paper describes a structured approach which facilitates the redesign of a traditional course into a distance course. The approach is based on that the desired forms of course flexibility are identified, and thereafter that the course activities are redesigned to facilitate interaction in a distance course. The approach is making use of known patterns of pedagogic interaction and existing guidelines for distance education design. The approach is illustrated with an example course in the field of information systems design.Keywords: Distance education, interaction in education, course design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143214014 Design Transformation to Reduce Cost in Irrigation Using Value Engineering
Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan
Abstract:
Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.
Keywords: Desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147014013 Modeling and Analysis of a Cycling Prosthetic
Authors: John Tolentino, Yong Seok Park
Abstract:
There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.
Keywords: 3D printing, cycling, prosthetic design, synthetic design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63514012 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data
Authors: Shinji Kawakura, Ryosuke Shibasaki
Abstract:
We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.
Keywords: Advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163914011 Measuring the Efficiency of Medical Equipment
Authors: Panagiotis H. Tsarouhas
Abstract:
the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.Keywords: Reliability, Availability, Series-parallel System, medical equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240214010 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0
Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang
Abstract:
This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.Keywords: Drift, electrical, and cooling calculation, integrated field, higher order harmonics (multipole errors), magnetic field gradient, quadrupole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82714009 Rotor Flow Analysis using Animplicit Harmonic Balance Method
Authors: D. Im, S. Choi, H. Kwon, S. H. Park, J. H. Kwon
Abstract:
This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.
Keywords: Design optimization, Implicit harmonic balancemethod, number of harmonics, rotor flows
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198114008 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems
Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas
Abstract:
All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213714007 Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads
Authors: K. Sandjak, B. Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.
Keywords: Nonlinear resilient behavior, unbound granular materials, RLT test results, FWD backcalculations, finite element simulations, pavement response and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230314006 Research on the Strategy of Whole-Life-Cycle Campus Design from the Perspective of Sustainable Concept: A Case Study on Hangzhou Senior High School in Zhejiang
Authors: Fan Yang
Abstract:
With the development of social economy and the popularization of quality education, the Chinese government invests more and more funding in education. Campus constructions are experiencing a great development phase. Under the trend of sustainable development, modern green campus design needs to meet new requirements of contemporary, informational and diversified education means and adapt to future education development. Educators, designers and other participants of campus design are facing new challenges. By studying and analyzing the universal unsatisfied current situations and sustainable development requirements of Chinese campuses, this paper summarizes the strategies and intentions of the whole-life-cycle campus design. In addition, a Chinese high school in Zhejiang province is added to illustrate the design cycle in an actual case. It is aimed to make all participants of campus design, especially the designers, to realize the importance of whole-life-cycle campus design and cooperate better. Sustainable campus design is expected to come true in deed instead of becoming a slogan in this way.
Keywords: Campus design, green school, sustainable development, whole-life-cycle design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95914005 Innovative Design Considerations for Adaptive Spacecraft
Authors: K. Parandhama Gowd
Abstract:
Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.
Keywords: Satellites, low earth orbit, medium earth orbit, geostationary earth orbit, self-organizing control system, anti-satellite weapons, orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems, command and data handling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100514004 Design of Expert System for Search Allergy and Selection of the Skin Tests using CLIPS
Authors: St. Karagiannis, A. I. Dounis, T. Chalastras, P. Tiropanis, D. Papachristos
Abstract:
This work presents the design of an expert system that aims in the procurement of patient medial background and in the search for suitable skin test selections. Skin testing is the tool used most widely to diagnose allergies. The language of expert systems CLIPS is used as a tool of designing. Finally, we present the evaluation of the proposed expert system which was achieved with the import of certain medical cases and the system produced with suitable successful skin tests.
Keywords: Artificial intelligence, expert system - CLIPS, allergy and skin test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284014003 Abstraction Hierarchies for Engineering Design
Authors: Esra E. Aleisa, Li Lin
Abstract:
Complex engineering design problems consist of numerous factors of varying criticalities. Considering fundamental features of design and inferior details alike will result in an extensive waste of time and effort. Design parameters should be introduced gradually as appropriate based on their significance relevant to the problem context. This motivates the representation of design parameters at multiple levels of an abstraction hierarchy. However, developing abstraction hierarchies is an area that is not well understood. Our research proposes a novel hierarchical abstraction methodology to plan effective engineering designs and processes. It provides a theoretically sound foundation to represent, abstract and stratify engineering design parameters and tasks according to causality and criticality. The methodology creates abstraction hierarchies in a recursive and bottom-up approach that guarantees no backtracking across any of the abstraction levels. The methodology consists of three main phases, representation, abstraction, and layering to multiple hierarchical levels. The effectiveness of the developed methodology is demonstrated by a design problem.Keywords: Hierarchies, Abstraction, Loop-free, Engineering Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152214002 Bioengineering for Customized Orthodontic Applications- Implant, Bracket and Dental Vibrator
Authors: Rajashekar Patil, S. Mohan Kumar, Shreya Ajmera
Abstract:
To understand complex living system an effort has made by mechanical engineers and dentists to deliver prompt products and services to patients concerned about their aesthetic look. Since two decades various bracket systems have designed involving techniques like milling, injection molding which are technically not flexible for the customized dental product development. The aim of this paper to design, develop a customized system which is economical and mainly emphasizes the expertise design and integration of engineering and dental fields. A custom made selfadjustable lingual bracket and customized implants are designed and developed using computer aided design (CAD) and rapid prototyping technology (RPT) to improve the smiles and to overcome the difficulties associated with conventional ones. Lengthy orthodontic treatment usually not accepted by the patients because the patient compliance is lost. Patient-s compliance can be improved by facilitating faster tooth movements by designing a localized dental vibrator using advanced engineering principles.Keywords: Orthodontics, Prosthodontics, Lingual bracket, Implants, Dental vibrator, Computer aided design, Rapid prototyping technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3159