Search results for: Pervasive Computing
92 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109591 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System
Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar
Abstract:
MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197490 Bit Model Based Key Management Scheme for Secure Group Communication
Authors: R. Varalakshmi
Abstract:
For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.
Keywords: Multicast Group key distribution, Bit model, Integer Multiplications, reconfigurable mesh, optimal algorithm, Gray Code, Computation Complexity, Storage Complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197189 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, Optical Forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213188 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242287 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks
Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.
Abstract:
Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.Keywords: Clusters, multi hop, random geometry, rate distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163686 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254585 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine
Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji
Abstract:
The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.
Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209984 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4
Authors: F. Abubaker, F. Tortorici, M. Capogni, C. Sutera, V. Bellini
Abstract:
This project concerns with the detection efficiency of the portable Triple-to-Double Coincidence Ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.
Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52083 A User Friendly Tool for Performance Evaluation of Different Reference Evapotranspiration Methods
Authors: Vijay Shankar
Abstract:
Evapotranspiration (ET) is a major component of the hydrologic cycle and its accurate estimation is essential for hydrological studies. In past, various estimation methods have been developed for different climatological data, and the accuracy of these methods varies with climatic conditions. Reference crop evapotranspiration (ET0) is a key variable in procedures established for estimating evapotranspiration rates of agricultural crops. Values of ET0 are used with crop coefficients for many aspects of irrigation and water resources planning and management. Numerous methods are used for estimating ET0. As per internationally accepted procedures outlined in the United Nations Food and Agriculture Organization-s Irrigation and Drainage Paper No. 56(FAO-56), use of Penman-Monteith equation is recommended for computing ET0 from ground based climatological observations. In the present study, seven methods have been selected for performance evaluation. User friendly software has been developed using programming language visual basic. The visual basic has ability to create graphical environment using less coding. For given data availability the developed software estimates reference evapotranspiration for any given area and period for which data is available. The accuracy of the software has been checked by the examples given in FAO-56.The developed software is a user friendly tool for estimating ET0 under different data availability and climatic conditions.
Keywords: Crop coefficient, Crop evapotranspiration, Field moisture, Irrigation Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165482 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: Logistic Regression LoR, Kernel Density Estimator KDE, Handwriting, Confidence Interval, Repeatability, Reproducibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47181 Grid Coordination with Marketmaker Agents
Authors: Xin Bai, Kresimir Sivoncik, Damla Turgut, Ladislau Bölöni
Abstract:
Market based models are frequently used in the resource allocation on the computational grid. However, as the size of the grid grows, it becomes difficult for the customer to negotiate directly with all the providers. Middle agents are introduced to mediate between the providers and customers and facilitate the resource allocation process. The most frequently deployed middle agents are the matchmakers and the brokers. The matchmaking agent finds possible candidate providers who can satisfy the requirements of the consumers, after which the customer directly negotiates with the candidates. The broker agents are mediating the negotiation with the providers in real time. In this paper we present a new type of middle agent, the marketmaker. Its operation is based on two parallel operations - through the investment process the marketmaker is acquiring resources and resource reservations in large quantities, while through the resale process it sells them to the customers. The operation of the marketmaker is based on the fact that through its global view of the grid it can perform a more efficient resource allocation than the one possible in one-to-one negotiations between the customers and providers. We present the operation and algorithms governing the operation of the marketmaker agent, contrasting it with the matchmaker and broker agents. Through a series of simulations in the task oriented domain we compare the operation of the three agents types. We find that the use of marketmaker agent leads to a better performance in the allocation of large tasks and a significant reduction of the messaging overhead.Keywords: grid computing, autonomous agents, market-basedgrid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153080 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator
Authors: Jagadish H. Pujar, S. F. Kodad
Abstract:
Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249679 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods
Authors: I. Laurence Aroquiaraj, K. Thangavel
Abstract:
Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.
Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175578 Overview of Multi-Chip Alternatives for 2.5D and 3D Integrated Circuit Packagings
Authors: Ching-Feng Chen, Ching-Chih Tsai
Abstract:
With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to such issues of the short channel effect and the development of the high numerical aperture (NA) lithography equipment. In the context of the ever-increasing technical requirements of portable devices and high-performance computing (HPC), relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (IC) based on the updated transistor structure and technology nodes. We conclude that multi-chip solutions for 2.5D and 3D IC packaging can prolong Moore’s Law.
Keywords: Moore’s Law, High Numerical Aperture, Power Consumption-Performance-Area-Cost-Cycle Time to Market, PPACC, 2.5 and 3D-Very-Large-Scale Integration Packaging, Through Silicon Vi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22877 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173776 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.
Keywords: telemedicine, fetal electrocardiogram, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51075 Comparison of Current Chinese and Japanese Design Specification for Bridge Pile in Liquefied Ground
Authors: Baydaa H. Maula, Ling Zhang, Tang Liang, Gao Xia, Xu Peng-Ju, Zhang Yong-Qiang, Kang Jie, Su Lei
Abstract:
Firstly, this study briefly presents the current situation that there exists a vast gap between current Chinese and Japanese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground; The Chinese and Japanese seismic design method and technical detail for bridge pile foundation in liquefying and lateral spreading ground are described and compared systematically and comprehensively, the methods of determining coefficient of subgrade reaction and its reduction factor as well as the computing mode of the applied force on pile foundation due to liquefaction-induced lateral spreading soil in Japanese design specification are especially introduced. Subsequently, the comparison indicates that the content of Chinese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground, just presenting some qualitative items, is too general and lacks systematicness and maneuverability. Finally, some defects of seismic design specification in China are summarized, so the improvement and revision of specification in the field turns out to be imperative for China, some key problems of current Chinese specifications are generalized and the corresponding improvement suggestions are proposed.
Keywords: liquefying soil, laterally spreading ground, seismic design specification for bridge pile foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365574 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.
Keywords: Acoustic model, direction of arrival, inverse source problem, sound localization, urban noises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7673 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145672 Development of Integrated GIS Interface for Characteristics of Regional Daily Flow
Authors: Ju Young Lee, Jung-Seok Yang, Jaeyoung Choi
Abstract:
The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.Keywords: Integrated GIS interface, spatial interpolation algorithm, FDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151071 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.
Keywords: Data grid, data replication, simulation, replica selection, replica placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210970 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm
Authors: B. Thiagarajan, R. Bremananth
Abstract:
Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.
Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294869 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.
Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80168 Fuzzy Join Dependency in Fuzzy Relational Databases
Authors: P. C. Saxena, D. K. Tayal
Abstract:
The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and partially known information can also be stored in databases in a formal way. However like classical databases, the fuzzy relational databases also undergoes decomposition during normalization, the issue of joining the decomposed fuzzy relations remains intact. Our effort in the present paper is to emphasize on this issue. In this paper we define fuzzy join dependency in the framework of type-1 fuzzy relational databases & type-2 fuzzy relational databases using the concept of fuzzy equality which is defined using fuzzy functions. We use the fuzzy equi-join operator for computing the fuzzy equality of two attribute values. We also discuss the dependency preservation property on execution of this fuzzy equi- join and derive the necessary condition for the fuzzy functional dependencies to be preserved on joining the decomposed fuzzy relations. We also derive the conditions for fuzzy join dependency to exist in context of both type-1 and type-2 fuzzy relational databases. We find that unlike the classical relational databases even the existence of a trivial join dependency does not ensure lossless join decomposition in type-2 fuzzy relational databases. Finally we derive the conditions for the fuzzy equality to be non zero and the qualification of an attribute for fuzzy key.Keywords: Fuzzy - equi join, fuzzy functions, fuzzy join dependency, type-1 fuzzy relational database, type-2 fuzzy relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203967 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.
Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99466 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method
Authors: W. Swiderski
Abstract:
In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84265 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms
Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert
Abstract:
We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.
Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419464 Neural Network Implementation Using FPGA: Issues and Application
Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan
Abstract:
.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented
Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442463 Spacecraft Neural Network Control System Design using FPGA
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.
Keywords: Spacecraft, neural network, FPGA, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009