
 

 

 
Abstract—The problem of identifying local noise sources on a 

construction site using a sensor system is considered. Mathematical 
modeling of detected signals on sensors was carried out, considering 
signal decay and signal delay time between the source and detector. 
Recordings of noises produced by construction tools were used as a 
dependence of noise on time. Synthetic sensor data was constructed 
based on these data, and a model of the propagation of acoustic waves 
from a point source in the three-dimensional space was applied. All 
sensors and sources are assumed to be located in the same plane. A 
source localization method is checked based on the signal time delay 
between two adjacent detectors and plotting the direction of the source. 
Based on the two direct lines' crossline, the noise source's position is 
determined. Cases of one dominant source and the case of two sources 
in the presence of several other sources of lower intensity are 
considered. The number of detectors varies from three to eight 
detectors. The intensity of the noise field in the assessed area is plotted. 
The signal of a two-second duration is considered. The source is 
located for subsequent parts of the signal with a duration above 0.04 
sec; the final result is obtained by computing the average value. 
 

Keywords—Acoustic model, direction of arrival, inverse source 
problem, sound localization, urban noises.  

I. INTRODUCTION 

HE source identification problems form a branch of 
mathematical physics and engineering inverse problems 

with different statements and applications. For instance, the 
identification of pollution or heat sources is mainly described 
in terms of inverse source problems (ISP) for parabolic 
equations (see, for example, [1]-[3], the monography [4], and 
references therein); the inverse problems for elliptic equations 
have application in geophysics [4]; IPSs for hyperbolic 
equations are applied to identify the sources of electromagnetic, 
acoustic, or seismic waves [4]-[9]. 

Problems of determining several moving sources of 
electromagnetic waves are solved to identify the positions of 
flying machines [10], [11]; the issues of detecting multiple 
speech sources in the room are solved in similar ways [12]-[16]. 

To detect several sources acting simultaneously, there are 
different methods of localization, such as an estimate of time 
delay (DOA and TDOA) [12]-[17], maximum likelihood 
method (ML) [18]-[20], beamforming method (BM) [21]-[23], 
and Multiple Signal Classification (MUSIC) [1], [15], [16]. 
More detailed methods of identifying sound sources are 
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discussed in the monography [24] and the review [25] and 
references therein. The review [25] is written with the aid of AI 
methods and gives not only the list of more relevant refences to 
that area, but additionally classifies sound localization methods 
presented recently. 

The classical sound localization methods assume that the 
sources are localized at several points in space and are also 
detected by pointwise detectors. The corresponding 
mathematical model is represented by the MUSIC method [11] 
via the relation in (1): 

 
𝑥 𝑡 ∑ 𝐴 𝛷 𝑠 𝑡 𝑛 𝑡 ,      (1) 

 
where the vector function x(t) of dimension N represents signals 
detected by N detectors; 𝑠 𝑡  is a wave amplitude generated by 
the i-th source, i = 1,…, M, where M is a number of sources; 
𝐴 𝛷  – is an N-dimensional vector that depends on i-th signal 
parameters, and 𝑛 𝑡  is a noise vector. 

Representation in (1) allows one to write a matrix form of the 
model of detected signals as (2): 

 
𝑥 𝑡 𝐴𝑠 𝑡 𝑛 𝑡 , 

𝐴 𝐴 𝛷 , 𝐴 𝛷 , … , 𝐴 𝛷 ,      (2) 
𝑠 𝑡 𝑠 𝑡 , 𝑠 𝑡 , . . . 𝑠 𝑡  

 
From this representation, it follows that all detected signals 

belong to the span of the space of generated waves in noise-free 
cases. Then, the dimension of the linear span of detected signals 
cannot be greater than the dimension of the generated wave 
space. Hence, in [1], the fundamental fact was derived that the 
number of sources is determined by the rank of the matrix 
presented in (3): 

 
𝑆 𝑥 𝑥              (3) 

 
This fact helps to determine the number of sources in 

advance. However, this model has some restrictions related to 
the ratio noise/signal and assumptions of the incident waves, 
which we will discuss further.  

We focus here on the identification of noises that are 
represented by acoustic sources in the construction sites. 
Compared to cases discussed in [11], our sources of interest are 
not speech, music, radio waves in fixed range frequencies, or 
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other meaningful signals but noises. Then, the ratio 
noise/signal, an important parameter to estimate the detection 
quality, is not applicable in the cases considered here. 

The paper is organized as follows: Section II consists of a 
statement on the basic mathematical model and formulates the 
solution to the direct problem in the case of 3D pointwise 
acoustic sources. Section III presents the statement of the 
inverse problem and analyses the applicability of the standard 
model (1) to the considered cases. Section IV describes the 
method to solve the inverse problem and the numerical 
modeling results. The paper is finalized by Conclusion.  

II. DIRECT PROBLEM SOLUTION 

The sound propagation model inside a homogeneous 
medium is specified by the acoustic equations in three-
dimensional space [26] as presented in (4): 

 

𝛻𝑝 ∑ 𝑓 𝑡, 𝑥, 𝑦, 𝑧 , 𝜌𝑐 𝛻 ⋅ 𝑢 0   (4) 

 
Here, (x, y, z) and t are Cartesian coordinates and time, c 

denotes the constant speed of sound, ρ is the density of the 
undisturbed medium, and p and u, respectively, are the changes 
in pressure and speed of medium particles at the vicinity of the 
steady-state values ρ0 = const and u = 0. The functions 
𝑓 𝑡, 𝑥, 𝑦, 𝑧  describe the acting disturbing sources. After 
eliminating the velocity vector from the equations, the direct 
problem for pressure, in which the intensities of external 
sources are assumed to be known, the model in (4) is reduced 
to the Cauchy problem for the following wave equation (5): 

 

𝑐 ∑ 𝑆 𝑡, 𝑥, 𝑦, 𝑧

𝑝 0, 𝑥, 𝑦, 𝑧 0
   (5) 

 
In the general case, the solution to the problem (5) is given 

by a convolution of the fundamental solution of the wave 
equation with the right-hand side. We consider the case when 
the characteristic sizes of the sensors and disturbing sources are 
at least three orders less in magnitude than the scale of the 
solution area. This makes it possible to model “hot spots” as 
concentrated pointwise sources. Accordingly, the source 
intensity function will be written in the form of a generalized δ-
function, i.e., (6): 

 

𝑆 𝑥, 𝑦, 𝑧, 𝑡 𝛿 𝑟  𝑟 𝐻 𝑡 , 𝑗 1, 𝑀    (6) 
 

The fundamental solution of the wave equation (5) has the 
following form [27] (7): 

 

𝛦 𝑥, 𝑦, 𝑧, 𝑡
с

, 𝑟 |r| 𝑥 𝑦 𝑧  (7) 
 

Then, computing the convolution of the function in (6) with 
the fundamental solution in (7), we obtain the expression for the 
solution of the Cauchy problem (5) for the source j as (8): 

𝑝 𝑡, 𝑟 𝐻 𝑡 𝜏 𝑑𝜏 ∬
| | | |

| |
𝑑𝑆

| |
∞

| |/

| |
           (8) 

 
Due to linearity, for several simultaneously acting sources, 

the solution is written in the form shown in (9): 
 

𝑝 𝑡, 𝑟 ∑
| |/

| |
        (9) 

 
The signal arrives from each source with a delay equal to the 

distance from the detector to the source rij divided by the wave 
speed c. When different sensors receive a signal, this difference 
in arrival time is usually applied to derive the system of 
equations for source localization [23]. On the other hand, the 
signal arrives with a decay of amplitude inversely proportional 
to the distance to the source. This relationship can also be 
considered when determining the position of the source. 

Equation (9) made it possible to perform numerical modeling 
of signal propagation from various sources using MATLAB 
scripts and construct sound intensity distribution in the solution 
area. Based on this model, the propagation of a spherical sound 
wave was simulated, and theories for detecting signal sources 
are tested below. 

III. GENERATION OF SYNTHETIC DATA 

The model in (9) contains the functions Hm(t) that describe 
disturbing signals at the source number m at the time moment t. 
To define those functions, we have used the real noises (like the 
sounds of some metal cutting tools and working construction 
machines) recorded on the construction site of residential 
complex “Athletic City” located in Astana, Kazakhstan, in July 
2023. The sounds were recorded with a sample frequency of 
48000 Hz by smartphone iPhone using an audio compression 
technology called Apple Lossless Audio Codec (ALAC). 
Length of recordings were ranging from 5 to 30 sec and a 
distance to the source was relatively close, around 5 m, due to 
the presence of extraneous noises. The analysis utilized 
MATLAB R2023b software to generate 2-second soundtracks 
as graphs from various noise sources (Fig. 1). 

For further analysis, the typical graphs of these soundtracks 
for a time interval of 0.025 sec are taken (Fig. 2) as an example. 

We need to choose the scales for the model's parameters to 
put numerical data in the admissible computing range. For 
modeling of sound propagation, the following characteristic 
scales were applied: length unit [L]=10 m, time unit [T] = 0.01 
sec, then the corresponding frequency of samples will be 480 
samples/[T], the speed scale will be measured in units of 100 
m/sec, and the value of c in (4) is equal to 0.34 units. 
Furthermore, all computations below are made in the 
abovementioned scales.  

By the (9), the nth detector registers the following amplitude 
of the signal as (10): 

 

𝑝 𝑡, 𝑟 ∑ | |/

| |
, 𝑛 1, 𝑁   (10) 
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(a) Angle grinder switched on 
 

 

(b) Grinding concrete 
 

 

(c) Drilling concrete 
 

 

(d) Hitting rebar with a hammer 

Fig. 1 Soundtracks processed in MATLAB 
 

 

Fig. 2 Examples of sound signals from angle grinder in action (1200 
samples are presented) 

 
Here, M and N are the numbers of noise sources and sensors, 

respectively; rn, rm are radius vectors of sensors and sources 
positions, and p(t, rn) is a pressure deviation from the steady-
state value at time t at the point rn. The function Hm(t) specifies 
the amplitude of the disturbance at the noise source number m 
at time moment t. 

To simulate the measured data and sound propagation, a 1x1 

square was considered, on the boundaries of which up to 8 
sensors were located, and no more than four noise sources were 
randomly located inside of that square. Fig. 2 shows an example 
of source and sensors placement depicted together with the 
sound field amplitude distribution. Numerical amplitude values 
were obtained based on the sound propagation model (10). 

The amplitude decay coefficients are set inversely 
proportional to the distance to the source, according to (10), and 
the signal delay associated with the finite speed of sound 
propagation is also considered.  

IV. DETECTION OF SOURCES’ LOCATION 

A. Case of One Source 

The case of one source with M = 1 is quite simple, and the 
location and time dependency can be recovered by the TDOA 
(Time Delay of Arrival) method. For that aim, three detectors 
are sufficient. To compute the time delay for two sensors with 
numbers k and l, we calculate the correlation function in (11): 

 
𝐵 𝜏 ∑ 𝑆 𝑡 𝑆 𝑡 𝜏       (11) 

 
The time delay is defined by the value τmax, where the 

function in (11) obtains its maximum as (12): 
 

Δ arg max 𝐵 𝜏          (12) 
 

To compute that function, we use the MATLAB software's 
function alignsignals(∙,∙). The maximum of the correlation 
function in (11) gives the time delay between two signals Δkl. 
Suppose that the amplitude of the signals at detectors are 
measured and equal to Ak and Al , and rk and rl are distances 
from sensors to the source. If the amplitude of the signal at the 
start is A, then Ak = A/ rk, Al = A/ rl, and the following system 
of equations to define rk and rl can be formulated as (13): 

 
 𝑟 𝑟 𝛥 , 𝐴 𝑟 𝐴 𝑟 0       (13) 

 
The only exception is the case of Ak = Al, when the system in 

(13) has infinite possible solutions, is rk = rl. For that case, we 
need to use data on additional sensor where the time delay is 
not zero. However, the solution for one source can be applied 
for the case of one dominant source. Knowing the distances 
between the source and two sensors helps to find the 
coordinates of sources geometrically. The accuracy of the 
source position strongly depends on the accuracy of the time 
delay definition. Computations show that the most important 
parameter to define the time delay is the length K of analyzed 
signal in (10). For instance, the values K = 200, 400, 2000 were 
checked and the last value K = 2000 gave the most accurate 
results in computing time delay and solving the system in (13). 
The larger values of K did not affect the results. Let us notice 
that the in Fig. 3, the exact position of the source (denoted by 
the red star) is imposed to the recovered location and intensity 
of the sound field is shown by gradation of color. The recovered 
location coincides with the exact one. 
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Fig. 3 The exact field intensity distribution and the recovered position 
of noise (the recovery coordinates are (0.2501, 0.3999) against actual 

values (0.25, 0.4)) 
 
The advantage of that model is its simplicity and that it works 

with a few numbers of detectors, even with two sensors. It is 
possible to apply that model in the case of one dominant noise 
source. In Fig. 4, we represent the result of source location in 
the case of three sources where one of them is dominant. To 

make one of sources dominate, we divide the signals from other 
sources by 10. Then, the corresponding norms of the signals 
equal to (37.5, 4.62, 3.82) for dominant source #1, (3.75, 46.3, 
3.82) for source #2, and (3.7, 4.6, 38.2) for source #3. The 
number of samples K = 2000. 

The position of signal source in Fig. 4 is obtained for the 
sound duration above 0.041 sec, but the duration of real noises 
is 2 sec.  

Further, we consider the possibility to locate the source by 
using subsequent parts of the signal, for instance with duration 
of 2000 samples. In Fig. 4, the results of subsequent 
computations of source position are depicted for signal of 
96000 samples, i.e., 48 parts of signal have the total duration 
equal to 2 sec. The final position of the source is computed as 
an average value of those 48 positions. Let us notice that if the 
source is moving, then this method helps to follow the trajectory 
of the source. 

It is seen from Fig. 5 that in the presence of additional sources 
not all locations based on parts of the signal are computed 
correctly (green asterisks), however, the average value is 
obtained with satisfactory accuracy. Table I compares the exact 
coordinates of the dominant source and the recovered ones. 

 

 

Fig. 4 Detection of one dominant source in the case of two additional pointwise noise 
 

TABLE I 
COMPARISON OF EXACT AND RECOVERED POSITIONS OF DOMINANT SOURCE 

Source # 1 2 3 

 exact recovered exact recovered exact recovered 
(x, y) (0.25, 0.4) (0.24, 0.399) (0.6, 0.4) (0.595, 0.4) (0.5, 0.75) (0.57, 0.64) 

 

 

Fig. 5 Location of dominant sources: a – source #1, b – source #2, c – source #3 (red stars denote positions of pointwise signals, red circles 
denote recovered position of dominant source; green stars are positions computed using parts of the signal) 
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B. Detection of Two Sources 

Suppose we have two simultaneously acting noise sources 
and at least four pairs of detectors. Fig. 6 shows the position of 
sources and detectors. 

 

 

Fig. 6 Sources detection by four pairs of sensors, numbered from 1 to 
8 (red stars represent exact positions of sources; intersections of lines 

are possible candidates for location of sources) 
 

The case of two sources turns out to be more complicated 
compared the case of one dominant source. At the first step, we 
have checked the idea of detecting the number of sources by 
computing the range of the matrix defined by the detected signal 
via (3). It turns out that the range of the matrix S in (10) is not 
equal to the number of sources. We have checked that rule for 
the number of sources up to 7. Let us notice that the equality is 
obtained only in the cases when the delay time is neglected, i.e., 
is set to zero. That means that in our mathematical model, we 
cannot define the number of acting sources based on the theory 
described in [11], because the delay time is not negligible.  

From another side, the examples above show the 
applicability of methods based on computing TDOA to locate 
the signals. That is the reason why we apply the method of 
detecting sources by computing TDOA between sensors. 

We follow the idea similar to [12] of detecting the direction 
of the source by using a group of sensors placed in close vicinity 
each other. In the 2D case, we use pairs of sensors. The time 
delay of arrival δt is computed for each pair of sensors via the 
covariance (11). The angle θ between the line connecting 
sensors and the direction to the source is calculated by the 
following approximate relation in (14): 

 

𝑐𝑜𝑠 𝜃
∙

           (14)  

 
Here, d is the distance between sensors in the pair. Let us 

explain the formula above. Suppose a source is placed at the 
point (x, y) on the plane, and two detectors are placed at points 
(0, 0) and (d, 0). Let (r, θ) be the polar coordinates of the source. 
Then, the difference in distances from the source to the sensors 
is equal to (15): 

 

𝛥 𝑥 𝑦 𝑥 𝑑 𝑦

𝑑 𝑐𝑜𝑠 𝜃         (15) 

 

If d << r then 𝛥 𝑑 𝑐𝑜𝑠 𝜃, and 𝑐𝑜𝑠 𝜃 𝛿𝑡 ⋅ 𝑐/𝑑. 

The angle θ gives the direction to the source from the pair of 
sensors. The location of source is defined by the crosspoint of 
two direct lines corresponding to adjacent pairs of sensors. That 
imposes the restriction on the number of possible sources to be 
detected; namely, it is less or equal than half of the number of 
pairs.  

In Figs. 6 and 7, the directions for each pair of detectors are 
built. The intersections of direct lines define the possible 
positions of sources. As is seen from Fig. 6, for instance, the 
adjacent pair of sensors labeled by (5, 6) and (7, 8) gives one 
possible intersection at point A, as well as the pairs (3, 4) and 
(5, 6) define another point B. To choose the correct position, 
compare the sum of distances from points A and B to the pairs 
of sensors as in (16):  

 
Sum1= |AC|+ |AD|, and Sum2= |CB| +|BE|    (16) 

 
The position with the lower value of that sum is considered 

to be a solution. For this example, the correct position is the 
point A. The Fig. 7 shows the recovered and the actual positions 
of sources. It is seen that they are located correctly.  

Let us notice that the most important parameter to locate the 
noise source is the time delay. Because of highly irregular and 
noisy signal in the construction area, that delay can be 
computed with mistakes. It depends on number of samples to 
compute the correlation function in (11). The most admissible 
value of that parameters for considered examples is equal to 
2000. In practice, it corresponds to the duration of signal equal 
to 2000/48000 ≈ 0.041 sec. 

 

 

Fig. 7 Choice of admissible source position from two possible 
options A and B 

 
But the real sound is much longer, for instance, for the case 

of 96000 samples, the duration is 2 second. Then that data is 
available for analysis too. For this case we set two identical 
noises at positions A and B and applied the method described 
above for subsequent parts of the detected sounds. The total 
number of parts is equal to 48, but not all parts are suitable to 
compute the TDOA. For instance, if the value Δ is greater than 
d, the direction cannot be defined. These parts were omitted, 
finally, 41 parts of total 48 were used in numerical 
computations. The final position is computed by average value 
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of the obtained subsequent data. Fig. 8 shows the final positions 
of recovered noise locations. The computations were repeated 
for different kind of identical sounds placed at two different 
positions. It turned out that for identical sounds their positions 
are located with high accuracy. Then two different sounds were 
placed at two different positions. 

In acoustics the energy of the wave is proportional to the 
square of the amplitude. Then, to compare the level of sounds 
we computed the squared Euclidian norm of the signal. 

In this case the sound with higher energy is located correctly, 
but the sound with lower energy is located worse. In Fig. 9a, the 
norms of the sounds are 37.55 and 46.3, respectively, for 
sources 1 and 2. In Fig. 9b those sounds are in the exchanged 
positions. In both cases the position of the louder source is 
located better. 

 

 

Fig. 8 Recovered locations of sources (red asterisks are exact 
positions (0.5, 0.3) and (0.65, 0.6); blue and green positions are 

recovered locations (0.5, 0.302) and (0.648, 0.598)) 
 

 

Fig. 9 Detection of two sources with different energy, where the source with higher energy is placed at: a – point 2 (res asterisk); b – point 1 
 

V. CONCLUSION 

Here, we made the mathematical modeling of the sound 
propagation and detection via equations of acoustic and by 
using several real noises written in urban areas. The 
computations show that model for one and two dominant 
signals that can be detected via relative low number of sensors 
and at short time interval. The case of higher number of sources 
needs additional study. However, the mathematical modeling 
helps to study the methods of modeling and detection of sounds 
sources before deployment of an experimental installation. We 
suppose that this approach has practical interest in monitoring 
the urban living area and checking disturbing noises. 
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