Search results for: target recognition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1500

Search results for: target recognition.

900 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: Stacking, multi-layers, ensemble, multi-class.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
899 Performance Based Seismic Retrofit of Masonry Infilled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: Energy Methods, Masonry Infilled Frame, Near-field Earthquakes, Seismic Protection, Supplemental damping devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
898 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
897 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach

Authors: Mohammad Saber Eslamlou

Abstract:

Morphology of Islamic cities has been extensively studied by researchers. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. We introduce the works in the field of morphology of Islamic cities and then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The present paper focuses mainly on her works regarding morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she is against to define a single framework for the recognition of morphology in Islamic cities. She believes that fabric of each region in the city follows from the principles of a specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.

Keywords: City, Islamic city, morphology of city, Giulia Annalinda Neglia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354
896 Searchable Encryption in Cloud Storage

Authors: Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: Fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
895 Verifying the Supremacy of Volume Modulated Arc Therapy Over Intensity Modulated Radiation Therapy: Pelvis Malignancies’ Perspective

Authors: M. Umar Farooq, T. Ahmad Afridi, M. Zia-Ul-Islam Arsalan, U. Hussain Haider, S. Ullah

Abstract:

Cancer, a leading fatal disease worldwide, can be treated with various techniques including radiation therapy. It involves the use of ionizing radiation to target cancer cells. On basis of source placement, radiation therapy is of two types i.e., Brachytherapy and External Beam Radiotherapy (EBRT). EBRT has evolved from 2-D conventional therapy to 3-D Conformal radiotherapy (3D-CRT) and then Intensity-Modulated Radiotherapy (IMRT). IMRT improves dose conformity and sparing of organs at risk. Volumetric Modulated Arc Therapy (VMAT) is a modern technique that uses treatment delivery in arcs with rotation of the gantry. In this report, a dosimetry comparison was performed between IMRT and VMAT. This study was conducted in the Radiotherapy Department of the Institute of Nuclear Medicine and Oncology Lahore (INMOL). Ten patients with Prostate Carcinoma were selected for this study to compare the methods. Simulation of these patients was done with help of a CT Simulator. All target volumes and organs were delineated by the oncologists. Then suitable fields/arcs were applied which cover volumes effectively. This was followed by the optimization of plans for both techniques for every patient. Finally, a comparison of evaluating parameters e.g., Conformity Index (CI), Volume Coverage, Homogeneity Index (HI), Organ Doses, and MUs (Monitor Units) was performed. We obtained better results of target conformity indices from VMAT (CI = 1.16) than IMRT (CI = 1.24). VMAT was better in organ sparing too. Also, VMAT shows fewer MUs (733 MUs) as compared to IMRT (2149 MUs). From this study, it is concluded that VMAT is a better treatment technique than IMRT. This technique will enhance treatment efficiency as it takes less time in obtaining the required results. Also, a very less scatter dose will be delivered to the patient.

Keywords: 2-D Conventional Radiotherapy, 3-D Conformal Radiotherapy, Intensity Modulated Radiotherapy, Prostate Carcinoma, Radiotherapy, Volumetric Modulated Arc Therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
894 Automatic Road Network Recognition and Extraction for Urban Planning

Authors: D. B. L. Bong, K.C. Lai, A. Joseph

Abstract:

The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.

Keywords: Road Network Recognition, Colour Space, Edge Detection, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
893 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
892 A New Framework and a Model for Product Development with an Application in the Telecommunications Services Sector

Authors: Ghada A. El Khayat

Abstract:

This paper argues that a product development exercise involves in addition to the conventional stages, several decisions regarding other aspects. These aspects should be addressed simultaneously in order to develop a product that responds to the customer needs and that helps realize objectives of the stakeholders in terms of profitability, market share and the like. We present a framework that encompasses these different development dimensions. The framework shows that a product development methodology such as the Quality Function Deployment (QFD) is the basic tool which allows definition of the target specifications of a new product. Creativity is the first dimension that enables the development exercise to live and end successfully. A number of group processes need to be followed by the development team in order to ensure enough creativity and innovation. Secondly, packaging is considered to be an important extension of the product. Branding strategies, quality and standardization requirements, identification technologies, design technologies, production technologies and costing and pricing are also integral parts to the development exercise. These dimensions constitute the proposed framework. The paper also presents a mathematical model used to calculate the design targets based on the target costing principle. The framework is used to study a case of a new product development in the telecommunications services sector.

Keywords: Product Development Framework, Quality FunctionDeployment, Mathematical Models, Telecommunications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
891 Codes beyond Bits and Bytes: A Blueprint for Artificial Life

Authors: Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq

Abstract:

The present study focuses on integrating Machine Learning and Genomics, hereafter termed ‘GenoLearning’, to develop Artificial Life (AL). This is achieved by leveraging gene editing to imbue genes with sequences capable of performing desired functions. To accomplish this, a specialized sub-network of Siamese Neural Network (SNN), named Transformer Architecture specialized in Sequence Analysis of Genes (TASAG), compares two sequences: the desired and target sequences. Differences between these sequences are analyzed, and necessary edits are made on-screen to incorporate the desired sequence into the target sequence. The edited sequence can then be synthesized chemically using a Computerized DNA Synthesizer (CDS). The CDS fabricates DNA strands according to the sequence displayed on a computer screen, aided by microprocessors. These synthesized DNA strands can be inserted into an ovum to initiate further development, eventually leading to the creation of an Embot, and ultimately, an H-Bot. While this study aims to explore the potential benefits of Artificial Intelligence (AI) technology, it also acknowledges and addresses the ethical considerations associated with its implementation.

Keywords: Machine Learning, Genomics, Genetronics, DNA, Transformer, Siamese Neural Network, Gene Editing, Artificial Life, H-Bot, Zoobot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107
890 A Simulation Tool for Projection Mapping Based on Mapbox and Unity

Authors: Noriko Hanakawa, Masaki Obana

Abstract:

A simulation tool is proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building three-dimensional models of real cities using Mapbox. The second function is movie projections to some buildings in real cities using Unity. The third is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event held in 2019. The event completed, but it faced a severe problem in the movie projection to the target building. Extra tents were set in front of the target building, and the tents became obstacles to the movie projection. The simulation tool developed herein could reconstruct the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents being obstacles could have been avoided using the tool. Moreover, we confirmed that the simulation tool is useful for planning future projection mapping events to avoid various extra equipment obstacles, such as utility poles, planting trees, and monument towers.

Keywords: avoiding obstacles, projection mapping, projector position, real 3D map

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
889 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems

Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle

Abstract:

Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.

Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
888 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
887 Cross Signal Identification for PSG Applications

Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu

Abstract:

The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.

Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
886 Highlighting Document's Structure

Authors: Sylvie Ratté, Wilfried Njomgue, Pierre-André Ménard

Abstract:

In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).

Keywords: Information retrieval, document structures, symbolic grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
885 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
884 sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: Classifiers, feature selection, locomotion, sEMG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
883 Mixtures of Monotone Networks for Prediction

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
882 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: Classification, fuzzy, inspection system, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
881 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: Data science, non-negative matrix factorization, missing data, quality of services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
880 Computer Aided Drug Design and Studies of Antiviral Drug against H3N2 Influenza Virus

Authors: Aditi Shukla, Ambarish S. Vidyarthi, Subir Samanta

Abstract:

The worldwide prevalence of H3N2 influenza virus and its increasing resistance to the existing drugs necessitates for the development of an improved/better targeting anti-influenza drug. H3N2 influenza neuraminidase is one of the two membrane-bound proteins belonging to group-2 neuraminidases. It acts as key player involved in viral pathogenicity and hence, is an important target of anti-influenza drugs. Oseltamivir is one of the potent drugs targeting this neuraminidase. In the present work, we have taken subtype N2 neuraminidase as the receptor and probable analogs of oseltamivir as drug molecules to study the protein-drug interaction in anticipation of finding efficient modified candidate compound. Oseltamivir analogs were made by modifying the functional groups using Marvin Sketch software and were docked using Schrodinger-s Glide. Oseltamivir analog 10 was detected to have significant energy value (16% less compared to Oseltamivir) and could be the probable lead molecule. It infers that some of the modified compounds can interact in a novel manner with increased hydrogen bonding at the active site of neuraminidase and it might be better than the original drug. Further work can be carried out such as enzymatic inhibition studies; synthesis and crystallizing the drug-target complex to analyze the interactions biologically.

Keywords: H3N2 Influenza, Neuraminidase, Oseltamiviranalogs, structure based drug designing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
879 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: Finite Element Method, Fluence Distribution, Monte Carlo Method, Photoacoustic Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
878 Potential of Croatia as an Attractive Tourist Destination for the Russian Market

Authors: Maja Martinovic, Valentina Zarkovic, Hrvoje Maljak

Abstract:

Europe is one of the most popular tourist destinations in the world, in which tourism occupies a significant place among the most relevant economic activities, and this applies to the Republic of Croatia as well. Based on this study, the authors intended to encourage and support the creation of an effective tourism policy in Croatia that would be based on the profiling of certain target groups. Another objective was to compare the results obtained from the customer analysis with the market analysis of the tourism industry in Croatia. The objective is to adapt the current tourist offer according to the identified needs and expectations of a particular tourist group in order to increase the attractiveness of Croatia as a tourist destination and motivate greater attendance of the targeted tourist groups. The current research was oriented towards the Russian market as the target group. Therefore, the authors wanted to encourage a discussion on how to attract more Russian guests. Consequently, the intention of the research was a detailed analysis of Russian tourists, in order to gain a better understanding of their travelling motives and tendencies. Furthermore, attention was paid to the expectations of Russian customers and to compare them with the Croatian tourist offer, and to determine whether there is a possibility for an overlap. The method used to obtain the information required was a survey conducted among Russian citizens about their travelling habits. The research was carried out on the basis of 166 participants of different age, gender, profession and income group. The sampling and distribution of the survey took place between May and July 2016. The results provided from the research indicate that Croatian tourism has certain unrealized potential considering the popularization of Croatia as a tourist destination, and there is a capacity for increasing the revenues within the group of Russian tourists. Such a conclusion is based on the fact that the Croatian tourist offer and the preferences of the Russian guests are compatible, i.e. they overlap in many aspects. The results demonstrate that beautiful nature, cultural and historical heritage as well as the sun and sea, play a leading role in attracting more Russian tourists. It is precisely these elements that form the three pillars of the Croatian tourist offer. On the other hand, the profiling revealed that the most desirable destinations for the Russian guests are Italy and Spain, both of which provide the same main tourist attractions as Croatia. Therefore, the focus of the strategic ideas given in the paper shifted to other tourism segments, such as type of accommodation, sales channels, travel motives, additional offer and seasonality etc., in order to gain advantage in the Russian market, the Mediterranean region and tourism in general. The purpose of the research is to serve as a foundation for analysing the attractiveness of the other tourist destinations in the Russian market, as well as to be a general basis for a more detailed profiling of the various specific target groups of the Russian and other tourist groups.

Keywords: Croatia, Russian market, target groups, tourism, tourist destination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
877 Biologically Inspired Artificial Neural Cortex Architecture and its Formalism

Authors: Alexei M. Mikhailov

Abstract:

The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?

Keywords: Cortex, pattern recognition, artificial neural cortex, computational biology, brain and neural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
876 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems

Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy

Abstract:

This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.

Keywords: Line congestion index, critical bus, contingency, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
875 Many-Sided Self Risk Analysis Model for Information Asset to Secure Stability of the Information and Communication Service

Authors: Jin-Tae Lee, Jung-Hoon Suh, Sang-Soo Jang, Jae-Il Lee

Abstract:

Information and communication service providers (ICSP) that are significant in size and provide Internet-based services take administrative, technical, and physical protection measures via the information security check service (ISCS). These protection measures are the minimum action necessary to secure the stability and continuity of the information and communication services (ICS) that they provide. Thus, information assets are essential to providing ICS, and deciding the relative importance of target assets for protection is a critical procedure. The risk analysis model designed to decide the relative importance of information assets, which is described in this study, evaluates information assets from many angles, in order to choose which ones should be given priority when it comes to protection. Many-sided risk analysis (MSRS) grades the importance of information assets, based on evaluation of major security check items, evaluation of the dependency on the information and communication facility (ICF) and influence on potential incidents, and evaluation of major items according to their service classification, in order to identify the ISCS target. MSRS could be an efficient risk analysis model to help ICSPs to identify their core information assets and take information protection measures first, so that stability of the ICS can be ensured.

Keywords: Information Asset, Information CommunicationFacility, Evaluation, ISCS (Information Security Check Service), Evaluation, Grade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
874 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Chek, diabetes, neural network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
873 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
872 Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

Authors: Hamdi Muhyuddin D. Barra, Henry J. Ramos

Abstract:

Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.

Keywords: Chemical vapor deposition, Magnetized sheetplasma, Thin-film synthesis, Titanium nitride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
871 Geochemistry of Tektites from Maoming of Guandong Province, China

Authors: Yung-Tan Lee, Ren-Yi Huang, Jyh-Yi Shih, Meng-Lung Lin, Yen-Tsui Hu, Hsiao-Ling Yu, Chih-Cheng Chen

Abstract:

We measured the major and trace element contents and Rb-Sr isotopic compositions of 12 tektites from the Maoming area, Guandong province (south China). All the samples studied are splash-form tektites which show pitted or grooved surfaces with schlieren structures on some surfaces. The trace element ratios Ba/Rb (avg. 4.33), Th/Sm (avg. 2.31), Sm/Sc (avg. 0.44), Th/Sc (avg. 1.01) , La/Sc (avg. 2.86), Th/U (avg. 7.47), Zr/Hf (avg. 46.01) and the rare earth elements (REE) contents of tektites of this study are similar to the average upper continental crust. From the chemical composition, it is suggested that tektites in this study are derived from similar parental terrestrial sedimentary deposit which may be related to post-Archean upper crustal rocks. The tektites from the Maoming area have high positive εSr(0) values-ranging from 176.9~190.5 which indicate that the parental material for these tektites have similar Sr isotopic compositions to old terrestrial sedimentary rocks and they were not dominantly derived from recent young sediments (such as soil or loess). The Sr isotopic data obtained by the present study support the conclusion proposed by Blum et al. (1992)[1] that the depositional age of sedimentary target materials is close to 170Ma (Jurassic). Mixing calculations based on the model proposed by Ho and Chen (1996)[2] for various amounts and combinations of target rocks indicate that the best fit for tektites from the Maoming area is a mixture of 40% shale, 30% greywacke, 30% quartzite.

Keywords: Geochemistry, Guandong province, South China, Tektites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020