Search results for: installation stability
847 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints
Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic
Abstract:
A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210846 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch
Authors: A. K. Al-Othman, K. M. EL-Nagger
Abstract:
Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).
Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208845 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application
Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa
Abstract:
This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.
Keywords: Rectangular path arrays, small missile antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931844 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty
Authors: S. Z. Sayed Hassen
Abstract:
The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.
Keywords: Robust control, power system, integral action, minimax LQG control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919843 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-
Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.
Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326842 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889841 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems
Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.
Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722840 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.
Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123839 A Study of Two Disease Models: With and Without Incubation Period
Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle
Abstract:
The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.
Keywords: Asymptotic stability, incubation period, Routh-Hurwitz criterion, Runge Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684838 An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner
Authors: P. Suntivarakorn, S. Satmarong, C. Benjapiyaporn, S. Theerakulpisut
Abstract:
This paper was to study the clothes dryer using waste heat from a split type air conditioner with a capacity of 12,648 btu/h. The drying chamber had a minimum cross section area with the size of 0.5 x 1.0 m2. The chamber was constructed by sailcloth and was inside folded with aluminium foil. Then, it was connected to the condensing unit of an air conditioner. The experiment was carried out in two aspects which were the clothes drying with and without auxiliary fan unit. The results showed that the drying rate of clothes in the chamber installed with and without auxiliary fan unit were 2.26 and 1.1 kg/h, respectively. In case of the chamber installed with a auxiliary fan unit, the additional power of 0.011 kWh was consumed and the drying rate was higher than that of clothes drying without auxiliary fan unit. Without auxiliary fan unit installation, no energy was required but there was a portion of hot air leaks away through the punctured holes at the wall of the drying chamber, hence the drying rate was dropped below. The drying rate of clothes drying using waste heat was higher than natural indoor drying and commercial dryer which their drying rate were 0.17 and 1.9 kg/h, respectively. It was noted that the COP of the air conditioner did not change during the operating of clothes drying.Keywords: Drying Rate, Clothes Dryer, COP, Air Conditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3503837 A Novel Architecture for Wavelet based Image Fusion
Authors: Susmitha Vekkot, Pancham Shukla
Abstract:
In this paper, we focus on the fusion of images from different sources using multiresolution wavelet transforms. Based on reviews of popular image fusion techniques used in data analysis, different pixel and energy based methods are experimented. A novel architecture with a hybrid algorithm is proposed which applies pixel based maximum selection rule to low frequency approximations and filter mask based fusion to high frequency details of wavelet decomposition. The key feature of hybrid architecture is the combination of advantages of pixel and region based fusion in a single image which can help the development of sophisticated algorithms enhancing the edges and structural details. A Graphical User Interface is developed for image fusion to make the research outcomes available to the end user. To utilize GUI capabilities for medical, industrial and commercial activities without MATLAB installation, a standalone executable application is also developed using Matlab Compiler Runtime.Keywords: Filter mask, GUI, hybrid architecture, image fusion, Matlab Compiler Runtime, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389836 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976835 SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment
Authors: Wenqing Fan, Yixuan Cheng, Wei Huang
Abstract:
The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.
Keywords: DIR Triad Model, DVE, vulnerability intelligence, vulnerability recurrence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691834 Air Pollution Control from Rice Shellers - A Case Study
Authors: S. M. Ahuja
Abstract:
A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90%. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution, there is improvement in the quality of products like bran and the life of shelling machinery has enhanced. The payback period of this technology is less than four shelling months.Keywords: Air Pollution, Cyclone Separator, Pneumatic Conveying, Rice Sheller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374833 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.
Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31832 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis
Abstract:
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.Keywords: Aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872831 Analysis of the Reasons behind the Deteriorated Standing of Engineering Companies during the Financial Crisis
Authors: Levan Sabauri
Abstract:
In this paper, we discuss the deteriorated standing of engineering companies, some of the reasons behind it and the problems facing engineering enterprises during the financial crisis. We show the part that financial analysis plays in the detection of the main factors affecting the standing of a company, classify internal problems and the reasons influencing efficiency thereof. The publication contains the analysis of municipal engineering companies in post-Soviet transitional economies. In the wake of the 2008 world financial crisis the issue became even more poignant. It should be said though that even before the problem had been no less acute for some post-Soviet states caught up in a lengthy transitional period. The paper highlights shortcomings in the management of transportation companies, with new, more appropriate methods suggested. In analyzing the financial stability of a company, three elements need to be considered: current assets, investment policy and structural management of the funding sources leveraging the stability, should be focused on. Inappropriate management of the three may create certain financial problems, with timely and accurate detection thereof being an issue in terms of improved standing of an enterprise. In this connection, the publication contains a diagram reflecting the reasons behind the deteriorated financial standing of a company, as well as a flow chart thereof. The main reasons behind low profitability are also discussed.
Keywords: Efficiency, financial management, financial analysis funding structure, financial sustainability, investment policy, profitability, solvency, working capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571830 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369829 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.
Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576828 Evaluation of Storage Stability and Quality Parameters in Biscuit Made from Blends of Wheat, Cassava (Manihot esculenta) and Carrot (Daucus carota) Flour
Authors: Aminat. O Adelekan, Olawale T. Gbadebo
Abstract:
Biscuit is one of the most consumed cereal foods in Nigeria and research has shown that locally available tropical crops like cassava, sweet potato can be made into flour and used in the production of biscuits and other pastries. This study investigates some quality parameters in biscuits made from blends of wheat, cassava and carrot flour. The values of result of samples increased with increasing percentage substitution of cassava and carrot flour in some quality parameter like fiber, ash, gluten content, and carbohydrate. The protein content reduced significantly (P < 0.05) with increasing percentage substitution of cassava and carrot flour which ranged from 14.80% to 11.80% compared with the control sample which had 15.60%. There was a recorded significant increase (P < 0.05) in some mineral composition such as calcium, magnesium, sodium, iron, phosphorus, and vitamin A and C composition as the percentage substitution of cassava and carrot flour increased. During storage stability test, samples stored in the fridge and freezer were found to be the best storage location to preserve the sensory attributes and inhibit microbial growth when compared with storage under the sun and on the shelf. Biscuit made with blends of wheat, cassava and carrot flour can therefore serve as an alternative to biscuits made from 100% wheat flour, as they are richer in vitamin A, vitamin C, carbohydrate, dietary fiber and some essential minerals.
Keywords: Biscuit, carrot, flour blends, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807827 Characteristics of the Storage Stability for Different Saccharomyces cerevisiae Strains
Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed B. M. Ahmed, Mohamed Fadel
Abstract:
Storage stability is the important factor of baker's yeast quality. Effect of the storage period (fifteen days) on storage sugars and cell viability of baker's yeast, produced from three S. cerevisiae strains (FC-620, FH-620, and FAT-12) as comparison with baker's yeast produced by S. cerevisae F-707 (original strain of baker's yeast factory) were investigated. Studied trehalose and glycogen content ranged from 10.19 to 14.79 % and from 10.05 to 10.69 % (d.w.), respectively before storage. The trehalose and glycogen content of all strains was decreased by increasing the storage period with no significant differences between the reduction rates of trehalose. Meanwhile, reduction rates of glycogen had significant differences between different strains, where the FH-620 and FC-620 strains had lowest rates as 18.12 and 20.70 %, respectively. Also, total viable cells and gassing power of all strains were decreased by increasing the storage period. FH-620 and FC-620 strains had the lowest values of reduction rates as an indicator of storage resistant. Where the reduction rates in total viable cells of FH-620 and FC-620 strains were 22.05 and 24.70%, respectively, while the reduction rates of gassing power were 20.90 and 24.30%, in the same order. On other hand, FAT-12 strain was more sensitive to storage as compared to original strain, where the reduction rates were 35.60 and 35.75%, respectively for total viable cells and gassing power.
Keywords: Baker’s yeast, trehalose, glycogen, gassing power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472826 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System
Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra
Abstract:
Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.Keywords: Steel structure, energy dissipation, friction-pendulum system, nonlinear analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367825 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: Ejector, diffuser, multiphase flow, syphon effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965824 Comparison Analysis of Science and Technology Council between Korea, USA, and Japan
Authors: Daekook Kang, Wooseok Jang, Jeonghwan Jeon
Abstract:
As Korea government has expanded the budget for the national research and development business, the need for the installation of institute taking a role of deliberation, coordination, and operation of research development business and its budget has been increased continuously. In response to the demands of the times, recently, the National Science & Technology Council (NSTC) was installed. However, to achieve a creative economy more efficiently, the fundamental introspection on the current state of the national administration system of science and technology in Korea should be needed. Accordingly, this study, firstly, analyzes the function and organizational structure of NSTC in Korea. Then, this study investigates the current state of the National Science and Technology Council in main world countries. Lastly, this study derives some implications based on the comparison analysis of the current state of the National Science and Technology Council between Korea and these countries. The present study will help in finding the way for the advancement of the NSTC in Korea.Keywords: Comparison analysis of Science and Technology Council, CSTP, National Science and Technology Council in Korea, Operating system of NSTC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494823 Wireless Building Monitoring and Control System
Authors: J.-P. Skön, M. Johansson, O. Kauhanen, M. Raatikainen, K. Leiviskä, M. Kolehmainen
Abstract:
The building sector is the largest energy consumer and CO2 emitter in the European Union (EU) and therefore the active reduction of energy consumption and elimination of energy wastage are among the main goals in it. Healthy housing and energy efficiency are affected by many factors which set challenges to monitoring, control and research of indoor air quality (IAQ) and energy consumption, especially in old buildings. These challenges include measurement and equipment costs, for example. Additionally, the measurement results are difficult to interpret and their usage in the ventilation control is also limited when taking into account the energy efficiency of housing at the same time. The main goal of this study is to develop a cost-effective building monitoring and control system especially for old buildings. The starting point or keyword of the development process is a wireless system; otherwise the installation costs become too high. As the main result, this paper describes an idea of a wireless building monitoring and control system. The first prototype of the system has been installed in 10 residential buildings and in 10 school buildings located in the City of Kuopio, Finland.Keywords: Energy efficiency, Indoor air quality, Monitoring system, Building automation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808822 Assembly and Alignment of Ship Power Plants in Modern Shipbuilding
Authors: A. O. Mikhailov, K. N. Morozov
Abstract:
Fine alignment of main ship power plants mechanisms and shaft lines provides long-term and failure-free performance of propulsion system while fast and high-quality installation of mechanisms and shaft lines decreases common labor intensity. For checking shaft line allowed stress and setting its alignment it is required to perform calculations considering various stages of life cycle. In 2012 JSC SSTC developed special software complex “Shaftline” for calculation of alignment of having its own I/O interface and display of shaft line 3D model. Alignment of shaft line as per bearing loads is rather labor-intensive procedure. In order to decrease its duration, JSC SSTC developed automated alignment system from ship power plants mechanisms. System operation principle is based on automatic simulation of design load on bearings. Initial data for shaft line alignment can be exported to automated alignment system from PC “Shaft line”.
Keywords: ANSYS, propulsion shaft, shaftline alignment, ship power plants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119821 Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites
Authors: Teuku Rihayat, Suryani
Abstract:
Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200oC, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318oC and 330oC, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively.Keywords: Polyurethane, Clay nanocomposites, Biobase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602820 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump
Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim
Abstract:
Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.
Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645819 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace
Authors: Arash Sharghi, Irina Dotu
Abstract:
The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.
Keywords: Cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173818 Lower energy Gait Pattern Generation in 5-Link Biped Robot Using Image Processing
Authors: Byounghyun Kim, Youngjoon Han, Hernsoo Hahn
Abstract:
The purpose of this study is to find natural gait of biped robot such as human being by analyzing the COG (Center Of Gravity) trajectory of human being's gait. It is discovered that human beings gait naturally maintain the stability and use the minimum energy. This paper intends to find the natural gait pattern of biped robot using the minimum energy as well as maintaining the stability by analyzing the human's gait pattern that is measured from gait image on the sagittal plane and COG trajectory on the frontal plane. It is not possible to apply the torques of human's articulation to those of biped robot's because they have different degrees of freedom. Nonetheless, human and 5-link biped robots are similar in kinematics. For this, we generate gait pattern of the 5-link biped robot by using the GA algorithm of adaptation gait pattern which utilize the human's ZMP (Zero Moment Point) and torque of all articulation that are measured from human's gait pattern. The algorithm proposed creates biped robot's fluent gait pattern as that of human being's and to minimize energy consumption because the gait pattern of the 5-link biped robot model is modeled after consideration about the torque of human's each articulation on the sagittal plane and ZMP trajectory on the frontal plane. This paper demonstrate that the algorithm proposed is superior by evaluating 2 kinds of the 5-link biped robot applied to each gait patterns generated both in the general way using inverse kinematics and in the special way in which by considering visuality and efficiency.Keywords: 5-link biped robot, gait pattern, COG (Center OfGravity), ZMP (Zero Moment Point).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893